❶ 大數據的產業鏈布局領域包含哪些呢
包括數據提供者、存儲商、分析和挖掘商以及應用企業的諸多行業,是關乎國計民生的所有行業都在參與的劃時代的「超級工程」。
❷ 中國大數據 行業發展的機遇有哪些
挑戰一:大數據行業發展良莠不濟
我國大數據仍處於起步發展階段,在「萬眾創新,大眾創業」的大環境下,大量的大數據企業不斷涌現,但企業發展良莠不濟。
挑戰二:大數據創新、創業盲目
企業在創新、創業過程,由於缺乏對大數據產業鏈的認識,出現許多跟風扎堆的情況,沒有有效發揮自身優勢,造成巨大的資源浪費。創新的時候,我們往往會看到一些標桿出來。通俗來講,看到人家風光,沒有看到人家背後受罪的時候。往往一窩蜂跟去的時候就會發現全是坑,而且
「此去華山一條道」,滿滿的全是競爭對手。因此我們做這個排行的初衷就是為大家梳理一下,哪些行業、哪些板塊、哪些領域是什麼樣的狀況,精確的找到自己的優勢方向,去做創新和努力。
挑戰三:投資盲目
霍華德.馬克思說過「投資者們明確達成的廣泛共識差不多都是錯的」。究其原因是資本在選擇大數據項目、企業的時候,由於沒有客觀的評價標准,同時也缺乏對產業鏈的整體認知,導致投資市場追逐熱點,存在一定的盲目性,大大降低了資本對大數據行業發展的正向推動力。
挑戰四:監管的盲目性
目前,監管層很難對大數據企業和機構進行有效的監管以及正確引導,要為大數據發展打造一個良性的生態環境就比較困難。其核心原因是對大數據企業的識別評價缺乏標准和規范。
挑戰五:大數據項目建設盲目
由於人才缺乏、大數據咨詢服務還沒有發展起來等原因,用戶很難對大數據項目有全面的認識,容易受到廠商的左右,導致建設內容的盲目;由於缺乏對產業的整體認識和大數據企業評價標准、方法,所以在大數據服務商選擇上也存在一定的盲目性。
❸ 大數據產業鏈,大數據的商業機會在哪
圍繞數據的整個產業鏈上,具有以下機會:
1)數據的獲得
大量數據的獲得,這個機會基本屬於新浪微博等這類大企業,大量交易數據的獲得,也基本屬於京東,淘寶這類企業。小企業基本沒機會獨立得到這些用戶數據。
2)數據的匯集
例如如果要能把各大廠商,各大微博,政府各個部門的數據匯集全,這個機會將是極大的。
但,這個工作,做大了需要政府行為,做中檔了,要企業間合作,做小了,也許就是一個聯盟或者一個民間組織。
3)數據的存儲
匯集了數據後,立即遇到的問題就是存儲,這個代價極大,原始數據不能刪除,需要保留。因此提供存儲設備的公司,執行存儲這個角色的公司,都具有巨大的市場機會,但是這也不屬於小公司,或者早期創業者。
4)數據的運算
在存儲了數據以後,怎麼把數據分發是個大問題,各種API,各種開放平台,都是將這些數據發射出去,提供後續的挖掘和分析工作,這個也需要有大資本投入,也不適合小公司。
5)數據的挖掘和分析
數據需要做增值服務,否則數據就沒有價值,big也big不到哪裡去,是沒有價值的big。因此這種數據分析和挖掘工作具有巨大的價值,這個機會屬於小公司,小團體。
6)數據的使用和消費
在數據做到了很好的挖掘和分析後,需要把這些結果應用在一個具體的場合上,來獲得回報,做數據挖掘和分析的公司,必須得找到這些金主才行,而這些金主肯定也不是小公司。
大數據未來的形態,或者產業鏈結構一定是分層的,巨大的,價值的體現發生在各個層次,每個層次都是生態鏈的重要一環,都孕育著巨大的機遇和挑戰,能做的唯有努力,做適合的工作。
❹ 大數據技術能夠帶動哪些產業的發展
金融行業:隨著大數據技術的廣泛普及和發展成熟,金融大數據應用已經成為行業熱點趨勢,在交易欺詐識別、精準營銷、黑產防範、消費信貸、信貸風險評估、供應鏈金融、股市行情預測、股價預測、智能投顧、騙保識別、風險定價等涉及銀行、證券、保險等多領域的具體業務中,得到廣泛應用。對於大數據的應用分析能力,正在成為金融機構未來發展的核心競爭要素。
金融大數據發展應用趨勢:
一是大數據應用水平正在成為金融企業競爭力的核心要素。金融的核心就是風控,風控以數據為導向。
二是金融行業數據整合、共享和開放成為趨勢。數據越關聯越有價值,越開放越有價值。隨著各國政府和企業逐漸認識到數據共享帶來的社會效益和商業價值,全球已經掀起一股數據開放的熱潮。
❺ 利用聯通移動電信三大運營商大數據,販賣相關行業得電話數據此數據不顯示電話號碼只能回撥!是否違法
都是違法行為,都屬於泄露用戶隱私。別干這種事,抓到會判刑。
❻ 大數據產業鏈中,需經過哪些步驟才能實現大數據應用
大數據是大量、高速、多變的信息,它需要新型的處理方式去促成更強的決策能力、洞察力與最佳化處理。大數據為企業獲得更為深刻、全面的洞察能力提供了前所未有的空間與潛力。
藉助大數據及相關技術,我們可針對不同行為特徵的客戶進行針對性營銷,甚至能從「將一個產品推薦給一些合適的客戶」到「將一些合適的產品推薦給一個客戶」,得以更聚焦客戶,進行個性化精準營銷。
大數據時代下的精準營銷是指通過大數據獲取對象的喜好,行為偏好,對不同對象進行不同營銷。大數據精準營銷的核心可以概括為幾大關鍵詞:用戶、需求、識別、體驗。
億美軟通推出數據雲服務,延續億美的客戶服務、客戶營銷、客戶管理的公司經營理念,通過龐大的消費數據資源,為客戶提供數據驗證,精準營銷等數據級服務。簡單說就是為企業提供數據驗證和數據篩選業務。
-
❼ 大數據產業鏈包括
物聯網產業鏈很長,其體系構架大致可分為感知層、網路層、應用層三個層面,每個層面又涉及到諸多細分領域。
感知層的功能主要是獲取信息,負責採集物理世界中發生的物理事件和數據,實現外部世界信息的感知和識別。包括傳統的無線感測器網路、全球定位系統、射頻識別、條碼識讀器等。這一層主要涉及兩大類關鍵技術:感測技術和標識技術。感測器網路的感知主要通過各種類型的感測器對物體的物質屬性(如溫度、濕度、壓力等)、環境狀態、行為態勢等信息進行大規模、分布式的信息獲取與狀態識別,它可用於環境監測、遠程醫療、智能家居等領域。標識技術通過給每件物體分配一個唯一的識別編碼,實現物聯網中任何物體的互聯。
網路層主要是完成感知信息高可靠性、高安全性的傳送和處理。從具體實現的角度,本層由下而上又分為三層:接入網、核心網和業務網。①接入網:主要完威各類設備的網路接入,強調各類接入方式,比如現有蜂窩移動通信網、無線局域/城域網、衛星通信網、各類有線網路等。②核心網:主要是完成信息的遠距離傳輸,目前依靠現有的互聯網、電信網或電視網。隨著三網融合的推進,核心網將朝全IP網路發展。③業務網:是實現物聯網業務能力和運營支撐能力的核心組成部分。
應用層主要是利用經過分析處理的感知數據,將物聯網技術與個人、家庭和行業信息化需求相結台,可向用戶提供豐富的服務內容,大大提高生產和生活的智能化程度,應用前景十分廣闊。其應用可分為監控型(物流監控、污染監控、災害監控)、查詢型(智能檢索、遠程抄表)、控制型(智能交通、智能家居、路燈控制、遠程醫療、綠色農業)、掃描型(手機錢包、ETC)等。
❽ 在大數據時代,有哪三種大數據公司活躍在大數據產業鏈上呢
基於數據本身的公司:自身擁有大量的數據資源,比如政府機構;
基於技術的公司:比如勤智數碼大數據處理平台;
基於思維的公司:可以依託大數據分析為企業提供戰略方向,比如魔鏡的大數據服務和勤智數碼大數據咨詢服務。按照以上的三種角色,對大數據的商業模式做了梳理和細分。
「數據擁有者」的商業模式數據擁有者,這樣的公司有三類:
1.大數據是業務核心,對大數據的重復利用是其發展的原動力,例如Google、Amazon、Inrix等;這種公司具有很強大的大數據技術能力,多數時候大數據技術本身主要用於自身的運作,具有三種產業鏈角色:數據+技術+服務;
2.大數據是作為提高生產效率、增加業務收入或者創造新的收入的使能器,非廠商的主流業務;例如運營商、銀行等,運營商的主要業務是通過通信設備提供的各種網路語音和數據業務,目前運營商本身並不通過數據的重復利用為主要手段來盈利;
3.數據中間商,本身不具有創造數據的能力,從各種地方搜集數據進行整合,然後再提取有用的信息進行利用;它們的商業模式有:
2B:面向企業或者公共政府部門,提供數據分析結果的服務;例如Inrix在交通信息領域,面向GPS生產商、和交通規劃部門、 FedEX和UPS等物流公司等,出售完整的當前甚至未來的交通狀況的模式圖或者資料庫;2C:面向個人,提供基於數據分析結果的服務。例如:Inrix提供一個免費的智能手機應用程序,一方面它可以為用戶提供免費的交通信息,另一方面它自己就得到了同步的數據。
2D:租售數據/信息模
式(數據資產分享和交易平台),新的商業模式,把數據/信息作為資產直接進行銷售;例如:Twitter把它的數據都通過兩個獨立的公司授權給別人使用;VISA和MasterCard收集和分析了來自210個國家的15億信用卡用戶的650億條交易記錄,用來預測商業發展和客戶的消費趨勢。然後,它把這些分析結果賣給其他公司;「技術提供者」的商業模式技術提供者的2B商業模式是目前的主流,有4種類型:提供單點技術,pure-play為主,例如:Teradata為沃爾瑪和Pop-Tarts這兩個零售商提供大數據分析技術,來獲得營銷點子;提供整體解決方案,IT廠商為主,例如:IBM提供軟硬一體的大數據解決方案;華為基於IT基礎設施領域在存儲和計算的優勢,提供整體大數據解決方案;大數據空間出租模式:大數據計算基礎設施上(與雲結合),通過出租一個虛擬空間,從簡單的文件存儲,逐步擴展到數據聚合平台,例如騰訊開放雲戰略為大數據創業者提供了廉價的數據基礎設施,使中小企業也有機會在大數據領域創新業務。Bigdata as a service,新的商業模式,提供E2E在線大數據技術或者解決方案。例如 RJMetrics,為電商提供快捷的商業智能在線服務,軟體定價為 500 美元每月,客戶只需在軟體端輸入特定數據,RJMetrics
便會將這些信息備份到安全的伺服器上,並承諾在7日內優化數據用以分析,之後以清晰簡潔的界面將數據分析結果反饋給客戶。再例如,GoodData面向商業用戶和IT企業高管,提供數據存儲、性能報告、數據分析等工具,將所有商業智能分析所需的數據和任務都搬到了雲上;技術提供者的2C商業模式,目前較少,與cloud結合後有很大的空間,未來是趨勢。例如:面向個人的家庭帳單、家庭耗能節能等或者面向個人數據的大數據解決方案。
「服務提供者」的商業模式服務提供者有兩種,一種是應用服務提供者,另一種是咨詢服務提供者。應用服務提供者是基於大數據技術,對外提供服務:
2B:面向企業或者公共政府部門,提供數據分析結果的服務;例如前面提過的Inrix;
2C:面向個人,提供基於數據分析的服務;例如: Flight_caster 和FlyOnTime.us基於分析過去十年裡每個航班的情況,然後將其與過去和現實的天氣情況進行匹配,預測航班是否會晚點;咨詢服務提供者,提供技術服務支持、技術(方法、商業等)咨詢,或者為企業提供類似數據科學家的咨詢服務;2B 商業模式:定位在某一具體行業,通過大量數據支持,對數據進行挖掘分析後預測相關主體的行為,以開展業務;利用數據挖掘技術幫助客戶開拓精準營銷或者新業務,有時企業收入來自於客戶增值部分的分成。 例如德國咨詢公司GFK幫助Telefonica 面向零售商、政府部門、公共機構提供基於地點的人員流動(Footfall)數據:以時間為維度(小時/天/月/年),在特定區域的人員人口統計數據(性別、年齡)和行動等數據; 這類企業成長非常快,一般擅長數據挖掘分析技術,幫助一些數據大戶如銀行、運營商等開展新的業務。
❾ 2020年運營商大數據市場價值大不大 有何價值
【導讀】在大數據行業發展過程中,運營商扮演者極其重要的角色,是大數據發展過程中非常重要的一環,今年來,運營商大數據已經應用到了很多行業和領域,那麼2020年運營商大數據市場價值大不大?有何價值呢?下面我們就來具體了解一下吧。
1、運營商大數據的市場應用
運營商大數據建模分析技術,運營商掌握著全國近15億用戶,用戶15億用戶數據資料進行實時監控,分行業建立用戶畫像具體分析,給各企業各行業各領域帶來了更先進的獲客,推廣與客戶關系管理平台。
(1)房產行業獲客應用
藉助強大的運營商大數據建模分析,和運營商用戶數據存儲分析能力,通過用戶畫像和完善的行業標簽幫助房產行業去挖掘和分析其潛在的有意向購房的客戶群體。依據對房產類網站,app,400電話,固話,小程序,關鍵詞等實時用戶數據進行實時數據監控和數據管理,緊密配合CRM平台對精準客戶資源進行獲客推廣服務和管理,實現精準用戶數據上的合理應用和轉化成交。
(2)教育行業獲客應用
藉助運營商大數據建模挖掘分析和精準的演算法對教育類網站,app,400電話,固話,小程序,關鍵詞實時訪問,活躍,來電者,搜索者用戶數據做用戶畫像,和行業分析處理,對有意向想接受教育者進行和教育資源分析,從而合理的與相關合作的教育機構進行匹配和部署。
(3)金融行業獲客應用
根據用戶畫像分析:依據金融行業網站,APP,400電話,固話等、從運營商用戶上網行為數據、通信行為數據等,去幫助相關金融機構,金融行業企業更加充分的了解自身潛在的客戶群體,從而減低業務難度,提高獲客轉化成交;
2、運營商大數據的應用價值
運營商大數據對我們的企業和不同的行業,領域,以及目前市場的營銷推廣,獲客都產生了重要的影響。從傳統營銷轉為數字營銷,數據營銷,在大數據時代,我們更應該選擇那些正規的規范的運營商大數據獲客產品,在避免法律風險的同時還可以讓其能夠發揮極高的市場價值,帶動政企又好又快的發展。
相信大家對於2020年運營商大數據市場價值大不大,已經有了自己的答案,如果已經確定了要在此行業獲得長足的發展,那就加油吧,你一定會成功的!