導航:首頁 > 產業大全 > 煙台數控機床產業發展趨勢

煙台數控機床產業發展趨勢

發布時間:2021-02-22 17:33:51

❶ 數控的發展趨勢

數控技術的應用不但給傳統製造業帶來了革命性的變化,使製造業成為工業化的象徵,而且隨著數控技術的不斷發展和應用領域的擴大,對國際民生的一些重要行業國防、汽車等的發展起著越來越重要的作用,這些行業裝備數字化已是現代發展的大趨勢,如:橋式三、五坐標高速數控龍門銑床、龍門移動式五坐標AC擺角數控龍門銑床、龍門移動式三坐標數控龍門銑床等。 隨著數控系統核心處理器性能的進步,目前高速加工中心進給速度最高可達80m/min,空運行速度可達100m/min左右。世界上許多汽車廠,包括我國的上海通用汽車公司,已經採用以高速加工中心組成的生產線部分替代組合機床。美國CINCINNATI公司的HyperMach機床進給速度最大達60m/min,快速為100m/min,加速度達2g,主軸轉速已達60000r/min。加工一薄壁飛機零件,只用30min,而同樣的零件在一般高速銑床加工需3小時,在普通銑床加工需8小時。
由於機構各組件分工的專業化,在專業主軸廠的開發下,主軸高速化日益普及。過去只用於汽車工業高速化的機種(每分鍾1.5萬轉以上的機種),已成為必備的機械產品要件。 隨著產品外觀曲線的復雜化致使模具加工技術必須不斷升級,對數控系統提出了新的需求。機床五軸加工、六軸加工已日益普及,機床加工的復合化已是不可避免的發展趨勢。新日本工機的5面加工機床採用復合主軸頭,可實現4個垂直平面的加工和任意角度的加工,使得5面加工和5軸加工可在同一台機床上實現,還可實現傾斜面和倒錐孔的加工。德國DMG公司展出DMUVoution系列加工中心,可在一次裝夾下5面加工和5軸聯動加工,可由CNC系統控制或CAD/CAM直接或間接控制。
數控車床的選用
數控車床又稱為 CNC車床,即計算機數字控制車床,是目前國內使用量最大,覆蓋面最廣的一種數控機床,約占數控機床總數的25%。數控機床是集機械、電氣、液壓、氣動、微電子和信息等多項技術為一體的機電一體化產品。是機械製造設備中具有高精度、高效率、高自動化和高柔性化,加工質量穩定可靠等優點的工作母機。數控機床的技術水平高低及其在金屬切削加工機床產量和總擁有量的百分比是衡量一個國家國民經濟發展和工業製造整體水平的重要標志之一。數控車床是數控機床的主要品種之一,它在數控機床中佔有非常重要的位置,幾十年來一直受到世界各國的普遍重視並得到了迅速的發展。
數控車床、車削中心,是一種高精度、高效率的自動化機床。它具有廣泛的加工藝性能,可加工直線圓柱、斜線圓柱、圓弧和各種螺紋。具有直線插補、圓弧插補各種補償功能,並在復雜零件的批量生產中發揮 了良好的經濟效果。合理選用數控車床,應遵循如下原則: 1. 前期准備
確定典型零件的工藝要求、加工工件的批量,擬定數控車床應具有的功能是做好前期准備,合理選用數控車床的前提條件 滿足典型零件的工藝要求
典型零件的工藝要求主要是零件的結構尺寸、加工范圍和精度要求。根據精度要求,即工件的尺寸精度、定位精度和表面粗糙度的要求來選擇數控車床的控制精度。 根據可靠性來選擇,可靠性是提高產品質量和生產效率的保證。數控機床的可靠性是指機床在規定條件下執行其功能時,長時間穩定運行而不出故障。即平均無故障時間長,即使出了故障,短時間內能恢復,重新投入使用。選擇結構合理、製造精良,並已批量生產的機床。一般,用戶越多,數控系統的可靠性越高。
2.選購
機床隨機附件、備件及其供應能力、刀具,對已投產數控車床、車削中心來說是十分重要的。選擇機床,需仔細考慮刀具和附件的配套性。
3.注重控制系統的同一性
生產廠家一般選擇同一廠商的產品,至少應選購同一廠商的控制系統,這給維修工作帶來極大的便利。教學單位,由於需要學生見多識廣,選用不同的系統,配備各種模擬軟體是明智的選擇。
4.根據性能價格比來選擇
做到功能、精度不閑置、不浪費,不要選擇和自己需要無關的功能。
5.機床的防護
需要時,機床可配備全封閉或半封閉的防護裝置、自動排屑裝置。
在選擇數控車床、車削中心時,應綜合考慮上述各項原則。

❷ 數控機床未來的發展趨勢是什麼

高速化、高精度化、高可靠性、復合化、智能化、柔性化、集成化和開放性是當今數控機床行業的主要發展方向。
數控技術的問世已有40多年的歷史,它是由機械學、控制學、電子學、計算機科學四大基礎學科發展起來的一門綜合性新型學科。技術發展的需要對21
世紀的數控技術提出了更高的要求。
一、個性化的發展趨勢
1.高速化、高精度化、高可靠性
高速化:提高進給速度與提高主軸轉速。
高精度化:其精度從微米級到亞微米級,乃至納米級(高可靠性:一般數控系統的可靠性要高於數控設備的可靠性在一個數量級以上,但也不是可靠性越高越好,因為商品受性能價格比的約束。
2.復合化
數控機床的功能復合化的發展,其核心是在一台機床上要完成車、銑、鑽、攻絲、絞孔和擴孔等多種操作工序,從而提高了機床的效率和加工精度,提高生產的柔性。
3.智能化
智能化的內容包括在數控系統中的各個方面:為追求加工效率和加工質量方面的智能化;為提高驅動性能及使用連接方便等方面的智能化;簡化編程、簡化操作方面的智能化;還有如智能化的自動編程、智能化的人機界面等,以及智能診斷、智能監控等方面的內容,方便系統的診斷及維修。
4.柔性化、集成化
當今世界上的數控機床向柔性自動化系統發展的趨勢是:從點(數控單機、加工中心和數控復合加工機床)、線(FMC、FMS、FTL、FML)向面(工段車間獨立製造島FA)、體(CIMS、分布式網路集成製造系統)的方向發展,另一方面向注重應用性和經濟性方向發展。柔性自動化技術是製造業適應動態市場需求及產品迅速更新的主要手段,是各國製造業發展的主流趨勢,是先進製造領域的基礎技術。
二、個性化是市場適應性發展趨勢
當今的市場,國際合作的格局逐漸形成,產品競爭日趨激烈,高效率、高精度加工手段的需求在不斷升級,用戶的個性化要求日趨強烈,專業化、專用化、高科技的機床越來越得到用戶的青睞。
三、開放性是體系結構的發展趨勢
新一代數控系統的開發核心是開放性。開放性有軟體平台和硬體平台的開放式系統,採用模塊化,層次化的結構,並通過形式向外提供統一的應用程序介面。
為解決傳統的數控系統封閉性和數控應用軟體的產業化生產存在的問題。目前許多國家對開放式數控系統進行研究,
數控系統開放化已經成為數控系統的未來之路。目前開放式數控系統的體系結構規范、通信規范、配置規范、運行平台、數控系統功能庫以及數控系統功能軟體開發工具等是當前研究的核心。網路化數控裝備是近兩年的一個新的焦點。數控裝備的網路化將極大地滿足生產線、製造系統、製造企業對信息集成的需求,也是實現新的製造模式如敏捷製造、虛擬企業、全球製造的基礎單元。國內外一些著名數控機床和數控系統製造公司都在近兩年推出了相關的新概念和樣機。

❸ 數控系統與數控機床技術發展趨勢是什麼

一、數控系統發展趨勢
從1952年美國麻省理工學院研製出首台試驗性數控系統,到現在已走過了46年歷程。數控系統由當初的電子管式起步,經歷了以下幾個發展階段:
分立式晶體管式--小規模集成電路式--大規模集成電路式--小型計算機式--超大規模集成電路--微機式的數控系統。到80年代,總體發展趨勢是:數控裝置由NC向CNC發展;廣泛採用32位CPU組成多微處理器系統;提高系統的集成度,縮小體積,採用模塊化結構,便於裁剪、擴展和功能升級,滿足不同類型數控機床的需要;驅動裝置向交流、數字化方向發展;CNC裝置向人工智慧化方向發展;採用新型的自動編程系統;增強通信功能;數控系統可靠性不斷提高。總之,數控機床技術不斷發展,功能越來越完善,使用越來越方便,可靠性越來越高,性能價格比也越來越高。到1990年,全世界數控系統專業生產廠家年產數控系統約13萬台套。國外數控系統技術發展的總體發展趨勢是:
1、新一代數控系統採用開放式體系結構
進入90年代以來,由於計算機技術的飛速發展,推動數控機床技術更快的更新換代。世界上許多數控系統生產廠家利用PC機豐富的軟硬體資源開發開放式體系結構的新一代數控系統。開放式體系結構使數控系統有更好的通用性、柔性、適應性、擴展性,並向智能化、網路化方向大大發展。近幾年許多國家紛紛研究開發這種系統,如美國科學製造中心(NCMS)與*共同領導的「下一代工作站/機床控制器體系結構」NGC,歐共體的「自動化系統中開放式體系結構」OSACA,日本的OSEC計劃等。開發研究成果已得到應用,如Cincinnati-Milacron公司從1995年開始在其生產的加工中心、數控銑床、數控車床等產品中採用了開放式體系結構的A2100系統。開放式體系結構可以大量採用通用微機的先進技術,如多媒體技術,實現聲控自動編程、圖形掃描自動編程等。數控系統繼續向高集成度方向發展,每個晶元上可以集成更多個晶體管,使系統體積更小,更加小型化、微型化。可靠性大大提高。利用多CPU的優勢,實現故障自動排除;增強通信功能,提高進線、聯網能力。開放式體系結構的新一代數控系統,其硬體、軟體和匯流排規范都是對外開放的,由於有充足的軟、硬體資源可供利用,不僅使數控系統製造商和用戶進行的系統集成得到有力的支持,而且也為用戶的二次開發帶來極大方便,促進了數控系統多檔次、多品種的開發和廣泛應用,既可通過升檔或剪裁構成各種檔次的數控系統,又可通過擴展構成不同類型數控機床的數控系統,開發生產周期大大縮短。這種數控系統可隨CPU升級而升級,結構上不必變動。
2、新一代數控系統控制性能大大提高
數控系統在控制性能上向智能化發展。隨著人工智慧在計算機領域的滲透和發展,數控系統引入了自適應控制、模糊系統和神經網路的控制機理,不但具有自動編程、前饋控制、模糊控制、學習控制、自適應控制、工藝參數自動生成、三維刀具補償、運動參數動態補償等功能,而且人機界面極為友好,並具有故障診斷專家系統使自診斷和故障監控功能更趨完善。伺服系統智能化的主軸交流驅動和智能化進給伺服裝置,能自動識別負載並自動優化調整參數。直線電機驅動系統已實用化。
總之,新一代數控系統技術水平大大提高,促進了數控機床性能向高精度、高速度、高柔性化方向發展,使柔性自動化加工技術水平不斷提高。
二、數控機床發展趨勢
為了滿足市場和科學技術發展的需要,為了達到現代製造技術對數控技術提出的更高的要求,當前,世界數控技術及其裝備發展趨勢主要體現在以下幾個方面:
1、高速、高效、高精度、高可靠性
要提高加工效率,首先必須提高切削和進給速度,同時,還要縮短加工時間;要確保加工質量,必須提高機床部件運動軌跡的精度,而可靠性則是上述目標的基本保證。為此,必須要有高性能的數控裝置作保證。
(1)高速、高效
機床向高速化方向發展,可充分發揮現代刀具材料的性能,不但可大幅度提高加工效率、降低加工成本,而且還可提高零件的表面加工質量和精度。超高速加工技術對製造業實現高效、優質、低成本生產有廣泛的適用性。
新一代數控機床(含加工中心)只有通過高速化大幅度縮短切削工時才可能進一步提高其生產率。超高速加工特別是超高速銑削與新一代高速數控機床特別是高速加工中心的開發應用緊密相關。90年代以來,歐、美、日各國爭相開發應用新一代高速數控機床,加快機床高速化發展步伐。高速主軸單元(電主軸,轉速15000-100000r/min)、高速且高加/減速度的進給運動部件(快移速度60~120m/min,切削進給速度高達60m/min)、高性能數控和伺服系統以及數控工具系統都出現了新的突破,達到了新的技術水平。隨著超高速切削機理、超硬耐磨長壽命刀具材料和磨料磨具,大功率高速電主軸、高加/減速度直線電機驅動進給部件以及高性能控制系統(含監控系統)和防護裝置等一系列技術領域中關鍵技術的解決,應不失時機地開發應用新一代高速數控機床。
依靠快速、准確的數字量傳遞技術對高性能的機床執行部件進行高精密度、高響應速度的實時處理,由於採用了新型刀具,車削和銑削的切削速度已達到5000米~8000米/分以上;主軸轉數在30000轉/分(有的高達10萬轉/分)以上;工作台的移動速度:(進給速度),在解析度為1微米時,在100米/分(有的到200米/分)以上,在解析度為0.1微米時,在24米/分以上;自動換刀速度在1秒以內;小線段插補進給速度達到12米/分。根據高效率、大批量生產需求和電子驅動技術的飛速發展,高速直線電機的推廣應用,開發出一批高速、高效的高速響應的數控機床以滿足汽車、農機等行業的需求。還由於新產品更新換代周期加快,模具、航空、軍事等工業的加工零件不但復雜而且品種增多。
(2)高精度
從精密加工發展到超精密加工(特高精度加工),是世界各工業強國致力發展的方向。其精度從微米級到亞微米級,乃至納米級(<10nm),其應用范圍日趨廣泛。超精密加工主要包括超精密切削(車、銑)、超精密磨削、超精密研磨拋光以及超精密特種加工(三束加工及微細電火花加工、微細電解加工和各種復合加工等)。隨著現代科學技術的發展,對超精密加工技術不斷提出了新的要求。新材料及新零件的出現,更高精度要求的提出等都需要超精密加工工藝,發展新型超精密加工機床,完善現代超精密加工技術,以適應現代科技的發展。
當前,機械加工高精度的要求如下:普通的加工精度提高了一倍,達到5微米;精密加工精度提高了兩個數量級,超精密加工精度進入納米級(0.001微米),主軸回轉精度要求達到0.01~0.05微米,加工圓度為0.1微米,加工表面粗糙度Ra=0.003微米等。
精密化是為了適應高新技術發展的需要,也是為了提高普通機電產品的性能、質量和可靠性,減少其裝配時的工作量從而提高裝配效率的需要。隨著高新技術的發展和對機電產品性能與質量要求的提高,機床用戶對機床加工精度的要求也越來越高。為了滿足用戶的需要,近10多年來,普通級數控機床的加工精度已由±10μm提高到±5μm,精密級加工中心的加工精度則從±3~5μm,提高到±1~1.5μm。
(3)高可靠性
是指數控系統的可靠性要高於被控設備的可靠性在一個數量級以上,但也不是可靠性越高越好,仍然是適度可靠,因為是商品,受性能價格比的約束。對於每天工作兩班的無人工廠而言,如果要求在16小時內連續正常工作,無故障率P(t)=99%以上的話,則數控機床的平均無故障運行時間MTBF就必須大於3000小時。MTBF大於3000小時,對於由不同數量的數控機床構成的無人化工廠差別就大多了,我們只對一台數控機床而言,如主機與數控系統的失效率之比為10:1的話(數控的可靠比主機高一個數量級)。此時數控系統的MTBF就要大於33333.3小時,而其中的數控裝置、主軸及驅動等的MTBF就必須大於10萬小時。
當前國外數控裝置的MTBF值已達6000小時以上,驅動裝置達30000小時以上。
2、模塊化、智能化、柔性化和集成化
(1)模塊化、專門化與個性化
機床結構模塊化,數控功能專門化,機床性能價格比顯著提高並加快優化。為了適應數控機床多品種、小批量的特點,機床結構模塊化,數控功能專門化,機床性能價格比顯著提高並加快優化。個性化是近幾年來特別明顯的發展趨勢。
(2)智能化
智能化的內容包括在數控系統中的各個方面:
--為追求加工效率和加工質量方面的智能化,如自適應控制,工藝參數自動生成;
--為提高驅動性能及使用連接方便方面的智能化,如前饋控制、電機參數的自適應運算、自動識別負載自動選定模型、自整定等;
--簡化編程、簡化操作方面的智能化,如智能化的自動編程,智能化的人機界面等;
--智能診斷、智能監控方面的內容,方便系統的診斷及維修等。
(3)柔性化和集成化
數控機床向柔性自動化系統發展的趨勢是:從點(數控單機、加工中心和數控復合加工機床)、線(FMC、FMS、FTL、FML)向面(工段車間獨立製造島、FA)、體(CIMS、分布式網路集成製造系統)的方向發展,另一方面向注重應用性和經濟性方向發展。柔性自動化技術是製造業適應動態市場需求及產品迅速更新的主要手段,是各國製造業發展的主流趨勢,是先進製造領域的基礎技術。其重點是以提高系統的可靠性、實用化為前提,以易於聯網和集成為目標;注重加強單元技術的開拓、完善;CNC單機向高精度、高速度和高柔性方向發展;數控機床及其構成柔性製造系統能方便地與CAD、CAM、CAPP、MTS聯結,向信息集成方向發展;網路系統向開放、集成和智能化方向發展。

❹ 簡述數控機床的發展趨勢

引言
從20世紀中葉數控技術出現以來,數控機床給機械製造業帶來了革命性的變化。數控加工具有如下特點:加工柔性好,加工精度高,生產率高,減輕操作者勞動強度、改善勞動條件,有利於生產管理的現代化以及經濟效益的提高。數控機床是一種高度機電一體化的產品,適用於加工多品種小批量零件、結構較復雜、精度要求較高的零件、需要頻繁改型的零件、價格昂貴不允許報廢的關鍵零件、要求精密復制的零件、需要縮短生產周期的急需零件以及要求100%檢驗的零件。數控機床的特點及其應用范圍使其成為國民經濟和國防建設發展的重要裝備。

進入21世紀,我國經濟與國際全面接軌,進入了一個蓬勃發展的新時期。機床製造業既面臨著機械製造業需求水平提升而引發的製造裝備發展的良機,也遭遇到加入世界貿易組織後激烈的國際市場競爭的壓力,加速推進數控機床的發展是解決機床製造業持續發展的一個關鍵。隨著製造業對數控機床的大量需求以及計算機技術和現代設計技術的飛速進步,數控機床的應用范圍還在不斷擴大,並且不斷發展以更適應生產加工的需要。本文簡要分析了數控機床高速化、高精度化、復合化、智能化、開放化、網路化、多軸化、綠色化等發展趨勢,並提出了我國數控機床發展中存在的一些問題。

數控機床的發展趨勢
1、高速化
隨著汽車、國防、航空、航天等工業的高速發展以及鋁合金等新材料的應用,對數控機床加工的高速化要求越來越高。
2、主軸轉速:機床採用電主軸(內裝式主軸電機),主軸最高轉速達200000r/min;
進給率:在解析度為0.01μm時,最大進給率達到240m/min且可獲得復雜型面的精確加工;
3、運算速度:微處理器的迅速發展為數控系統向高速、高精度方向發展提供了保障,開發出CPU已發展到32位以及64位的數控系統,頻率提高到幾百兆赫、上千兆赫。由於運算速度的極大提高,使得當解析度為0.1μm、0.01μm時仍能獲得高達24~240m/min的進給速度;
4、換刀速度:目前國外先進加工中心的刀具交換時間普遍已在1s左右,高的已達0.5s。德國Chiron公司將刀庫設計成籃子樣式,以主軸為軸心,刀具在圓周布置,其刀到刀的換刀時間僅0.9s。

5、高精度化
數控機床精度的要求現在已經不局限於靜態的幾何精度,機床的運動精度、熱變形以及對振動的監測和補償越來越獲得重視。
6、提高CNC系統控制精度:採用高速插補技術,以微小程序段實現連續進給,使CNC控制單位精細化,並採用高解析度位置檢測裝置,提高位置檢測精度(日本已開發裝有106脈沖/轉的內藏位置檢測器的交流伺服電機,其位置檢測精度可達到0.01μm/脈沖),位置伺服系統採用前饋控制與非線性控制等方法;
7、採用誤差補償技術:採用反向間隙補償、絲桿螺距誤差補償和刀具誤差補償等技術,對設備的熱變形誤差和空間誤差進行綜合補償。研究結果表明,綜合誤差補償技術的應用可將加工誤差減少60%~80%;

採用網格解碼器檢查和提高加工中心的運動軌跡精度,並通過模擬預測機床的加工精度,以保證機床的定位精度和重復定位精度,使其性能長期穩定,能夠在不同運行條件下完成多種加工任務,並保證零件的加工質量。

1、功能復合化
復合機床的含義是指在一台機床上實現或盡可能完成從毛坯至成品的多種要素加工。根據其結構特點可分為工藝復合型和工序復合型兩類。工藝復合型機床如鏜銑鑽復合——加工中心、車銑復合——車削中心、銑鏜鑽車復合——復合加工中心等;工序復合型機床如多面多軸聯動加工的復合機床和雙主軸車削中心等。採用復合機床進行加工,減少了工件裝卸、更換和調整刀具的輔助時間以及中間過程中產生的誤差,提高了零件加工精度,縮短了產品製造周期,提高了生產效率和製造商的市場反應能力,相對於傳統的工序分散的生產方法具有明顯的優勢。
加工過程的復合化也導致了機床向模塊化、多軸化發展。德國Index公司最新推出的車削加工中心是模塊化結構,該加工中心能夠完成車削、銑削、鑽削、滾齒、磨削、激光熱處理等多種工序,可完成復雜零件的全部加工。隨著現代機械加工要求的不斷提高,大量的多軸聯動數控機床越來越受到各大企業的歡迎。
在2005年中國國際機床展覽會(CIMT2005)上,國內外製造商展出了形式各異的多軸加工機床(包括雙主軸、雙刀架、9軸控制等)以及可實現4~5軸聯動的五軸高速門式加工中心、五軸聯動高速銑削中心等。

2、控制智能化
隨著人工智慧技術的發展,為了滿足製造業生產柔性化、製造自動化的發展需求,數控機床的智能化程度在不斷提高。具體體現在以下幾個方面:
加工過程自適應控制技術:通過監測加工過程中的切削力、主軸和進給電機的功率、電流、電壓等信息,利用傳統的或現代的演算法進行識別,以辯識出刀具的受力、磨損、破損狀態及機床加工的穩定性狀態,並根據這些狀態實時調整加工參數(主軸轉速、進給速度)和加工指令,使設備處於最佳運行狀態,以提高加工精度、降低加工表面粗糙度並提高設備運行的安全性;
加工參數的智能優化與選擇:將工藝專家或技師的經驗、零件加工的一般與特殊規律,用現代智能方法,構造基於專家系統或基於模型的「加工參數的智能優化與選擇器」,利用它獲得優化的加工參數,從而達到提高編程效率和加工工藝水平、縮短生產准備時間的目的;
智能故障自診斷與自修復技術:根據已有的故障信息,應用現代智能方法實現故障的快速准確定位;
智能故障回放和故障模擬技術:能夠完整記錄系統的各種信息,對數控機床發生的各種錯誤和事故進行回放和模擬,用以確定錯誤引起的原因,找出解決問題的辦法,積累生產經驗;
智能化交流伺服驅動裝置:能自動識別負載,並自動調整參數的智能化伺服系統,包括智能主軸交流驅動裝置和智能化進給伺服裝置。這種驅動裝置能自動識別電機及負載的轉動慣量,並自動對控制系統參數進行優化和調整,使驅動系統獲得最佳運行;
智能4M數控系統:在製造過程中,加工、檢測一體化是實現快速製造、快速檢測和快速響應的有效途徑,將測量(Measurement)、建模(Modelling)、加工 (Manufacturing)、機器操作(Manipulator)四者(即4M)融合在一個系統中,實現信息共享,促進測量、建模、加工、裝夾、操作的一體化。

3、體系開放化
向未來技術開放:由於軟硬體介面都遵循公認的標准協議,只需少量的重新設計和調整,新一代的通用軟硬體資源就可能被現有系統所採納、吸收和兼容,這就意味著系統的開發費用將大大降低而系統性能與可靠性將不斷改善並處於長生命周期;
向用戶特殊要求開放:更新產品、擴充功能、提供硬軟體產品的各種組合以滿足特殊應用要求;
數控標準的建立:國際上正在研究和制定一種新的CNC系統標准ISO14649(STEP-NC),以提供一種不依賴於具體系統的中性機制,能夠描述產品整個生命周期內的統一數據模型,從而實現整個製造過程乃至各個工業領域產品信息的標准化。標准化的編程語言,既方便用戶使用,又降低了和操作效率直接有關的勞動消耗。

4、驅動並聯化
並聯運動機床克服了傳統機床串聯機構移動部件質量大、系統剛度低、刀具只能沿固定導軌進給、作業自由度偏低、設備加工靈活性和機動性不夠等固有缺陷,在機床主軸(一般為動平台)與機座(一般為靜平台)之間採用多桿並聯聯接機構驅動,通過控制桿系中桿的長度使桿系支撐的平台獲得相應自由度的運動,可實現多坐標聯動數控加工、裝配和測量多種功能,更能滿足復雜特種零件的加工,具有現代機器人的模塊化程度高、重量輕和速度快等優點。
並聯機床作為一種新型的加工設備,已成為當前機床技術的一個重要研究方向,受到了國際機床行業的高度重視,被認為是「自發明數控技術以來在機床行業中最有意義的進步」和「21世紀新一代數控加工設備」。

5、端化(大型化和微型化)
國防、航空、航天事業的發展和能源等基礎產業裝備的大型化需要大型且性能良好的數控機床的支撐。而超精密加工技術和微納米技術是21世紀的戰略技術,需發展能適應微小型尺寸和微納米加工精度的新型製造工藝和裝備,所以微型機床包括微切削加工(車、銑、磨)機床、微電加工機床、微激光加工機床和微型壓力機等的需求量正在逐漸增大。

6、信息交互網路化
對於面臨激烈競爭的企業來說,使數控機床具有雙向、高速的聯網通訊功能,以保證信息流在車間各個部門間暢通無阻是非常重要的。既可以實現網路資源共享,又能實現數控機床的遠程監視、控制、培訓、教學、管理,還可實現數控裝備的數字化服務(數控機床故障的遠程診斷、維護等)。例如,日本Mazak公司推出新一代的加工中心配備了一個稱為信息塔(e-Tower)的外部設備,包括計算機、手機、機外和機內攝像頭等,能夠實現語音、圖形、視像和文本的通信故障報警顯示、在線幫助排除故障等功能,是獨立的、自主管理的製造單元。

7、新型功能部件
為了提高數控機床各方面的性能,具有高精度和高可靠性的新型功能部件的應用成為必然。具有代表性的新型功能部件包括:
高頻電主軸:高頻電主軸是高頻電動機與主軸部件的集成,具有體積小、轉速高、可無級調速等一系列優點,在各種新型數控機床中已經獲得廣泛的應用;
直線電動機:近年來,直線電動機的應用日益廣泛,雖然其價格高於傳統的伺服系統,但由於負載變化擾動、熱變形補償、隔磁和防護等關鍵技術的應用,機械傳動結構得到簡化,機床的動態性能有了提高。如:西門子公司生產的1FN1系列三相交流永磁式同步直線電動機已開始廣泛應用於高速銑床、加工中心、磨床、並聯機床以及動態性能和運動精度要求高的機床等;德國EX-CELL-O公司的XHC卧式加工中心三向驅動均採用兩個直線電動機;

電滾珠絲桿:電滾珠絲桿是伺服電動機與滾珠絲桿的集成,可以大大簡化數控機床的結構,具有傳動環節少、結構緊湊等一系列優點。

8、高可靠性
數控機床與傳統機床相比,增加了數控系統和相應的監控裝置等,應用了大量的電氣、液壓和機電裝置,易於導致出現失效的概率增大;工業電網電壓的波動和干擾對數控機床的可靠性極為不利,而數控機床加工的零件型面較為復雜,加工周期長,要求平均無故障時間在2萬小時以上。為了保證數控機床有高的可靠性,就要精心設計系統、嚴格製造和明確可靠性目標以及通過維修分析故障模式並找出薄弱環節。國外數控系統平均無故障時間在7~10萬小時以上,國產數控系統平均無故障時間僅為10000小時左右,國外整機平均無故障工作時間達800小時以上,而國內最高只有300小時。

9、加工過程綠色化
隨著日趨嚴格的環境與資源約束,製造加工的綠色化越來越重要,而中國的資源、環境問題尤為突出。因此,近年來不用或少用冷卻液、實現干切削、半干切削節能環保的機床不斷出現,並在不斷發展當中。在21世紀,綠色製造的大趨勢將使各種節能環保機床加速發展,佔領更多的世界市場。

10、多媒體技術的應用
多媒體技術集計算機、聲像和通信技術於一體,使計算機具有綜合處理聲音、文字、圖像和視頻信息的能力,因此也對用戶界面提出了圖形化的要求。合理的人性化的用戶界面極大地方便了非專業用戶的使用,人們可以通過窗口和菜單進行操作,便於藍圖編程和快速編程、三維彩色立體動態圖形顯示、圖形模擬、圖形動態跟蹤和模擬、不同方向的視圖和局部顯示比例縮放功能的實現。除此以外,在數控技術領域應用多媒體技術可以做到信息處理綜合化、智能化,應用於實時監控系統和生產現場設備的故障診斷、生產過程參數監測等,因此有著重大的應用價值。

❺ 數控機床的現狀及發展趨勢如何

數控機床以其卓越的柔性自動化的性能、優異而穩定的精度、靈捷而多樣化的功能引起世人矚目,它開創了機械產品向機電一體化發展的先河,成為先進製造技術中的一項核心技術。數控系統技術的突飛猛進為數控機床的技術進步提供了條件。當前,數控機床的發展主要體現為以下幾方面:

1 高速、高效

機床向高速化方向發展,不但可大幅度提高加工效率、降低加工成本,而且還可提高零件的表面加工質量和精度。超高速加工技術對製造業實現高效、優質、低成本生產有廣泛的適用性。20 世紀90 年代以來,歐、美、日各國爭相開發應用新一代高速數控機床,加快機床高速化發展步伐。高速主軸單元(電主軸,轉速15000 - 100000r/min)、高速且高加/減速度的進給運動部件(快移速度60~120m/min,切削進給速度高達60m/min)、高性能數控和伺服系統以及數控工具系統都出現了新的突破,達到了新的技術水平。隨著超高速切削機理、超硬耐磨長壽命刀具材料和磨料磨具,大功率高速電主軸、高加/減速度直線電機驅動進給部件以及高性能控制系統(含監控系統)和防護裝置等一系列技術領域中關鍵技術的解決,為開發應用新一代高速數控機床提供了技術基礎。目前,在超高速加工中,車削和銑削的切削速度已達到5000~8000m/min以上;主軸轉數在30000 轉/分(有的高達10 萬r/min)以上;工作台的移動速度(進給速度):在解析度為1 微米時,在100m/min(有的到200m/min) 以上,在解析度為0.1 m 時,在24m/min 以上;自動換刀速度在1 秒以內;小線段插補進給速度達到12m/min。

2 高精度

從精密加工發展到超精密加工,是世界各工業強國致力發展的方向。其精度從微米級到亞微米級,乃至納米級(#lt;10nm),其應用范圍日趨廣泛。當前,在機械加工高精度的要求下,普通級數控機床的加工精度已由±10 m 提高到±5 m;精密級加工中心的加工精度則從±3~5 m,提高到±1~1.5 m,甚至更高;超精密加工精度進入納米級(0.001m),主軸回轉精度要求達到0.01~0.05 m,加工圓度為0.1m,加工表面粗糙度Ra=0.003 微米等。這些機床一般都採用矢量控制的變頻驅動電主軸(電機與主軸一體化),主軸徑向跳動小於2 m,軸向竄動小於1 m,軸系不平衡度達到G0.4 級。高速高精加工機床的進給驅動,主要有#quot;回轉伺服電機加精密高速滾珠絲杠#quot;和#quot;直線電機直接驅動#quot;兩種類型。此外,新興的並聯機床也易於實現高速進給。滾珠絲杠由於工藝成熟,應用廣泛,不僅精度能達到較高(ISO34081 級),而且實現高速化的成本也相對較低,所以迄今仍為許多高速加工機床所採用。當前使用滾珠絲杠驅動的高速加工機床最大移動速度90m/min,加速度1.5g。滾珠絲杠屬機械傳動,在傳動過程中不可避免存在彈性變形、摩擦和反向間隙,相應地造成運動滯後和其它非線性誤差,為了排除這些誤差對加工精度的影響,1993 年開始在機床上應用直線電機直接驅動,由於是沒有中間環節的#quot;零傳動#quot;,不僅運動慣量小、系統剛度大、響應快,可以達到很高的速度和加速度,而且其行程長度理論上不受限制,定位精度在高精度位置反饋系統的作用下也易達到較高水平,是高速高精加工機床特別是中、大型機床較理想的驅動方式。目前使用直線電機的高速高精加工機床最大快移速度已達208 m/min,加速度2g,並且還有發展餘地。

3 高可靠性

隨著數控機床網路化應用的發展,數控機床的高可靠性已經成為數控系統製造商和數控機床製造商追求的目標。對於每天工作兩班的無人工廠而言,如果要求在16 小時內連續正常工作,無故障率在P(t)= 99%以上,則數控機床的平均無故障運行時間MTBF 就必須大於3000 小時。我們只對一台數控機床而言,如主機與數控系統的失效率之比為10:1(數控的可靠比主機高一個數量級)。此時數控系統的MTBF 就要大於33333.3 小時,而其中的數控裝置、主軸及驅動等的MTBF 就必須大於10 萬小時。當前國外數控裝置的MTBF 值已達6000 小時以上,驅動裝置達30000 小時以上,但是,可以看到距理想的目標還有差距。

4 復合化

在零件加工過程中有大量的無用時間消耗在工件搬運、上下料、安裝調整、換刀和主軸的升、降速上,為了盡可能降低這些無用時間,人們希望將不同的加工功能整合在同一台機床上,因此,復合功能的機床成為近年來發展很快的機種。柔性製造范疇的機床復合加工概念是指將工件一次裝夾後,機床便能按照數控加工程序,自動進行同一類工藝方法或不同類工藝方法的多工序加工,以完成一個復雜形狀零件的主要乃至全部車、銑、鑽、鏜、磨、攻絲、鉸孔和擴孔等多種加工工序。就棱體類零件而言,加工中心便是最典型的進行同一類工藝方法多工序復合加工的機床。事實證明,機床復合加工能提高加工精度和加工效率,節省佔地面積特別是能縮短零件的加工周期。

5 多軸化

隨著5 軸聯動數控系統和編程軟體的普及,5 軸聯動控制的加工中心和數控銑床已經成為當前的一個開發熱點,由於在加工自由曲面時,5 軸聯動控制對球頭銑刀的數控編程比較簡單,並且能使球頭銑刀在銑削3 維曲面的過程中始終保持合理的切速,從而顯著改善加工表面的粗糙度和大幅度提高加工效率,而在3 軸聯動控制的機床無法避免切速接近於零的球頭銑刀端部參予切削,因此,5 軸聯動機床以其無可替代的性能優勢已經成為各大機床廠家積極開發和競爭的焦點。最近,國外還在研究6 軸聯動控制使用非旋轉刀具的加工中心,雖然其加工形狀不受限制且切深可以很薄,但加工效率太低一時尚難實用化。

6 智能化

智能化是21 世紀製造技術發展的一個大方向。智能加工是一種基於神經網路控制、模糊控制、數字化網路技術和理論的加工,它是要在加工過程中模擬人類專家的智能活動,以解決加工過程許多不確定性的、要由人工干預才能解決的問題。智能化的內容包括在數控系統中的各個方面:為追求加工效率和加工質量的智能化,如自適應控制,工藝參數自動生成;為提高驅動性能及使用連接方便的智能化,如前饋控制、電機參數的自適應運算、自動識別負載自動選定模型、自整定等;簡化編程、簡化操作的智能化,如智能化的自動編程,智能化的人機界面等;智能診斷、智能監控,方便系統的診斷及維修等。世界上正在進行研究的智能化切削加工系統很多,其中日本智能化數控裝置研究會針對鑽削的智能加工方案具有代表性。

7 網路化

數控機床的網路化,主要指機床通過所配裝的數控系統與外部的其它控制系統或上位計算機進行網路連接和網路控制。數控機床一般首先面向生產現場和企業內部的區域網,然後再經由網際網路通向企業外部,這就是所謂Internet/Intranet 技術。隨著網路技術的成熟和發展,最近業界又提出了數字製造的概念。數字製造,又稱#quot;e-製造#quot;,是機械製造企業現代化的標志之一,也是國際先進機床製造商當今標准配置的供貨方式。隨著信息化技術的大量採用,越來越多的國內用戶在進口數控機床時要求具有遠程通訊服務等功能。機械製造企業在普遍採用CAD/CAM的基礎上,越加廣泛地使用數控加工設備。數控應用軟體日趨豐富和具有#quot;人性化#quot;。虛擬設計、虛擬製造等高端技術也越來越多地為工程技術人員所追求。通過軟體智能替代復雜的硬體,正在成為當代機床發展的重要趨勢。在數字製造的目標下,通過流程再造和信息化改造,ERP 等一批先進企業管理軟體已經脫穎而出,為企業創造出更高的經濟效益。

8 柔性化

數控機床向柔性自動化系統發展的趨勢是:從點(數控單機、加工中心和數控復合加工機床)、線(FMC、FMS、FTL、FML)向面(工段車間獨立製造島、FA)、體(CIMS、分布式網路集成製造系統)的方向發展,另一方面向注重應用性和經濟性方向發展。柔性自動化技術是製造業適應動態市場需求及產品迅速更新的主要手段,是各國製造業發展的主流趨勢,是先進製造領域的基礎技術。其重點是以提高系統的可靠性、實用化為提,以易於聯網和集成為目標;注重加強單元技術的開拓、完善;CNC 單機向高精度、高速度和高柔性方向發展;數控機床及其構成柔性製造系統能方便地與CAD、CAM、CAPP、MTS 聯結,向信息集成方向發展;網路系統向開放、集成和智能化方向發展。

9 綠色化

21 世紀的金切機床必須把環保和節能放在重要位置,即要實現切削加工工藝的綠色化。目前這一綠色加工工藝主要集中在不使用切削液上,這主要是因為切削液既污染環境和危害工人健康,又增加資源和能源的消耗。干切削一般是在大氣氛圍中進行,但也包括在特殊氣體氛圍中(氮氣中、冷風中或採用乾式靜電冷卻技術)不使用切削液進行的切削。不過,對於某些加工方式和工件組合,完全不使用切削液的干切削目前尚難與實際應用,故又出現了使用極微量潤滑(MQL) 的准干切削。目前在歐洲的大批量機械加工中,已有10~15%的加工使用了乾和准干切削。對於面向多種加工方法/工件組合的加工中心之類的機床來說,主要是採用准干切削,通常是讓極微量的切削油與壓縮空氣的混合物經由機床主軸與工具內的中空通道噴向切削區。在各類金切機床中,採用干切削最多的是滾齒機。總之,數控機床技術的進步和發展為現代製造業的發展提供了良好的條件,促使製造業向著高效、優質以及人性化的方向發展。可以預見,隨著數控機床技術的發展和數控機床的廣泛應用,製造業將迎來一次足以撼動傳統製造業模式的深刻革命。
http://www.ca18.net/news/content-105064.htm

❻ 數控機床的發展趨勢是什麼

數控技術的應用不但給傳統製造業帶來了革命性的變化,使製造業成為工業化的象徵,而且隨著數控技術的不斷發展和應用領域的擴大,它對國計民生的一些重要行業(IT、汽車、輕工、醫療等)的發展起著越來越重要的作用,因為這些行業所需裝備的數字化已是現代發展的大趨勢。當前數控車床呈現以下發展趨勢。
1高速、高精密化
高速、精密是機床發展永恆的目標。隨著科學技術突飛猛進的發展,機電產品更新換代速度加快,對零件加工的精度和表面質量的要求也愈來愈高。為滿足這個復雜多變市場的需求,當前機床正向高速切削、干切削和准干切削方向發展,加工精度也在不斷地提高。另一方面,電主軸和直線電機的成功應用,陶瓷滾珠軸承、高精度大導程空心內冷和滾珠螺母強冷的低溫高速滾珠絲杠副及帶滾珠保持器的直線導軌副等機床功能部件的面市,也為機床向高速、精密發展創造了條件。數控車床採用電主軸,取消了皮帶、帶輪和齒輪等環節,大大減少了主傳動的轉動慣量,提高了主軸動態響應速度和工作精度,徹底解決了主軸高速運轉時皮帶和帶輪等傳動的振動和雜訊問題。採用電主軸結構可使主軸轉速達到10000r/min以上。直線電機驅動速度高,加減速特性好,有優越的響應特性和跟隨精度。用直線電機作伺服驅動,省去了滾珠絲杠這一中間傳動環節,消除了傳動間隙(包括反向間隙),運動慣量小,系統剛性好,在高速下能精密定位,從而極大地提高了伺服精度。直線滾動導軌副,由於其具有各向間隙為零和非常小的滾動摩擦,磨損小,發熱可忽略不計,有非常好的熱穩定性,提高了全程的定位精度和重復定位精度。通過直線電機和直線滾動導軌副的應用,可使機床的快速移動速度由原來的10~20m/min提高到60~80m/min,甚至高達120m/min。
2高可靠性
數控機床的可靠性是數控機床產品質量的一項關鍵性指標。數控機床能否發揮其高性能、高精度和高效率,並獲得良好的效益,關鍵取決於其可靠性的高低。
3數控車床設計CAD化、結構設計模塊化
隨著計算機應用的普及及軟體技術的發展,CAD技術得到了廣泛發展。CAD不僅可以替代人工完成繁瑣的繪圖工作,更重要的是可以進行設計方案選擇和大件整機的靜、動態特性分析、計算、預測及優化設計,可以對整機各工作部件進行動態模擬模擬。在模塊化的基礎上在設計階段就可以看出產品的三維幾何模型和逼真的色彩。採用CAD,還可以大大提高工作效率,提高設計的一次成功率,從而縮短試制周期,降低設計成本,提高市場競爭能力。通過對機床部件進行模塊化設計,不僅能減少重復性勞動,而且可以快速響應市場,縮短產品開發設計周期。
4功能復合化
功能復合化的目的是進一步提高機床的生產效率,使用於非加工輔助時間減至最少。通過功能的復合化,可以擴大機床的使用范圍、提高效率,實現一機多用、一機多能,即一台數控車床既可以實現車削功能,也可以實現銑削加工;或在以銑為主的機床上也可以實現磨削加工。寶雞機床廠已經研製成功的CX25Y數控車銑復合中心,該機床同時具有X、Z軸以及C軸和Y軸。通過C軸和Y軸,可以實現平面銑削和偏孔、槽的加工。該機床還配置有強動力刀架和副主軸。副主軸採用內藏式電主軸結構,通過數控系統可直接實現主、副主軸轉速同步。該機床工件一次裝夾即可完成全部加工,極大地提高了效率。
5智能化、網路化、柔性化和集成化
21世紀的數控裝備將是具有一定智能化的系統。智能化的內容包括在數控系統中的各個方面:為追求加工效率和加工質量方面的智能化,如加工過程的自適應控制,工藝參數自動生成;為提高驅動性能及使用連接方面的智能化,如前饋控制、電機參數的自適應運算、自動識別負載自動選定模型、自整定等;簡化編程、簡化操作方面的智能化,如智能化的自動編程、智能化的人機界面等;還有智能診斷、智能監控等方面的內容,以方便系統的診斷及維修等。網路化數控裝備是近年來機床發展的一個熱點。數控裝備的網路化將極大地滿足生產線、製造系統、製造企業對信息集成的需求,也是實現新的製造模式,如敏捷製造、虛擬企業、全球製造的基礎單元。數控機床向柔性自動化系統發展的趨勢是:從點(數控單機、加工中心和數控復合加工機床)、線(FMC、FMS、FTL、FML)向面(工段車間獨立製造島、FA)、體(CIMS、分布式網路集成製造系統)的方向發展,另一方面向注重應用性和經濟性方向發展。柔性自動化技術是製造業適應動態市場需求及產品迅速更新的主要手段,是各國製造業發展的主流趨勢,是先進製造領域的基礎技術。其重點是以提高系統的可靠性、實用化為前提,以易於聯網和集成為目標,注重加強單元技術的開拓和完善。CNC單機向高精度、高速度和高柔性方向發展。數控機床及其構成柔性製造系統能方便地與CAD、CAM、CAPP及MTS等聯結,向信息集成方向發展。網路系統向開放、集成和智能化方向發展。

❼ 數控車床未來的發展前景會怎樣

數控車床的發展
一、數控車床的簡述
一般機床是能完成車、銑、刨、磨、鏜、鑽、電火花、剪板、折彎、激光切割等等機械加工的方法的設備,它能把金屬毛坯零件加工成所需要的形狀,其中包括尺寸精度和幾何精度兩個方面。
數控機床則是從普通機床的基礎上發展過來的,它是一種裝備了數控系統的機床。數控系統則是採用了自動控制技術,能用數控指令來控制機床的運動(稱之為數控控制技術)的自動控制系統。
二、機床的雛形、誕生及發展
機床是人類進行生產勞動的重要工具,也是社會生產力發展水平的重要標志。
1、數控車床的雛形
機床最早的雛形是於公元前2000多年出現的樹木車床。當時,工作時腳踏繩索下端的套圈,利用樹枝的彈性使工作由繩索帶動旋轉,中世紀的彈性棒車床運用的仍是這一原理。1500年左右,義大利人達芬奇曾繪制過車床、鏜床、螺紋加工機床的構想革圖。中國明朝出版的《天工開物》中載有磨床的結構,用腳踏的方法使鐵盤旋轉,加上沙子和水剖切玉石。18世紀的工業革命推動了機床的發展。
1774年,英國人威爾金發明較精密的炮筒鏜床,他用這台炮鏜床鏜出的汽缸,滿足了瓦特蒸汽機的發展。1770年威爾金森製造了一台水輪驅動的鏜床。1797年英國人莫利茲創造的車床能實現機動進給和車削螺紋,這是機床結構的一大變革。19世紀以後,由於紡織、動力、交通運輸機械和軍火生產的推動,各種基本類型的機床相繼出現。
2、機床的誕生及發展
普通機床經經歷了近兩百年的歷史。隨著電子技術、計算機技術及自動化,精密機械與測量等技術的發展與綜合應用,生產了機電一體化的新型機床一一數控機床。
在20世紀40年代,飛機和導彈製造業發展迅速,原來的加工設備已無能力加工航工業需要的高精度的復雜型面零件。1948年,美國PARSONS公司在加工直升機葉片輪廓檢驗樣板的機床時,首先提出了數控機床的設想,在麻省理工學院(MIT)伺服機構研究所的協助下,於1952年成功研製了世界上第一台三坐標銑床樣機。後又經過三年時間的改造和自動程序編制的研究,數控機床進入了實用階段。於1958年,美國的KEANEY&TRECKER公司在世界上首先研製成功了帶有自動換刀裝置的加工中心。
可以說,數控機床的誕生為人類帶來了不同凡響的意義。於此同時,數控機床的優越性也著重的體現出來了,在國際的競爭日益劇烈、產品品種變化頻繁的形勢下,各國也開始研究各種不同類型的數控機床,新品種的機床也隨之增長。在這樣的條件下,數控機床也經歷了幾代變化:
1952-1959年採用的是電子管構成的專用數控(NC)系統的數控機床,這是第一代。
1959年由於在計算機行業中研製出晶體管元件,因而便出現了採用晶體管電路NC系統的數控機床,從而跨入了第二代。
1965年出現了開始採用小、中規模集成的NC系統數控機床的第三代。
1970年為數控機床發展的第四代,此時採用大規模集成電路的小型通用電子計算機控制系統的系統數控機床。
1974年開始採用微型電子計算機數控系統(MNC)數控機床,此時為第五代。
在經歷不同的年代的發展,機床的數控化率不斷提高,也使數控機床加工對象改型的適應性加強,加工精度提高,大大的提高了生產效率,為製造業提供了良好的經濟效益,且數控機床由於自動化程度很高,很利用現在化的生產管理,使其成為國民經濟和國防建設發展的重要裝備。
三、數控機床的發展趨向
數控機床一經使用就了其獨特的優越性和強大生命力,使原來大量不能解決的問題,找到了科學解決的途徑。然而,隨著製造業對數控機床的大量需求以及計算機技術和現代設計技術的飛速進步,數控機床必須不斷發展以更適應生產加工的需要,以達更高更好的效果。

閱讀全文

與煙台數控機床產業發展趨勢相關的資料

熱點內容
中天高科國際貿易 瀏覽:896
都勻經濟開發區2018 瀏覽:391
輝縣農村信用社招聘 瀏覽:187
鶴壁市靈山文化產業園 瀏覽:753
國際金融和國際金融研究 瀏覽:91
烏魯木齊有農村信用社 瀏覽:897
重慶農村商業銀行ipo保薦機構 瀏覽:628
昆明市十一五中葯材種植產業發展規劃 瀏覽:748
博瑞盛和苑經濟適用房 瀏覽:708
即墨箱包貿易公司 瀏覽:720
江蘇市人均gdp排名2015 瀏覽:279
市場用經濟學一覽 瀏覽:826
中山2017年第一季度gdp 瀏覽:59
中國金融證券有限公司怎麼樣 瀏覽:814
國內金融機構的現狀 瀏覽:255
西方經濟學自考論述題 瀏覽:772
汽車行業產業鏈發展史 瀏覽:488
創新文化產業發展理念 瀏覽:822
國際貿易開題報告英文參考文獻 瀏覽:757
如何理解管理經濟學 瀏覽:22