1. 平穩性檢驗後可以確定協整關系嗎
平穩性檢驗後可以確定協整關系。
單位根檢驗、協整檢驗和格蘭傑因果關系檢驗三者之間的關系 。
實證檢驗步驟:
1.先做單位根檢驗,看變數序列是否平穩序列,若平穩,可構造回歸模型等經典計量經濟學模型;若非平穩,進行差分,當進行到第i次差分時序列平穩,則服從i階單整(注意趨勢、截距不同情況選擇,根據P值和原假設判定)。
2.若所有檢驗序列均服從同階單整,可構造VAR模型,做協整檢驗(注意滯後期的選擇),判斷模型內部變數間是否存在協整關系,即是否存在長期均衡關系。如果有,則可以構造VEC模型或者進行Granger因果檢驗,檢驗變數之間「誰引起誰變化」,即因果關系。
在實際應用過程中,通常需要對時間序列進行平穩性判斷,觀察一個序列是否存在某種趨勢,以及各時間間隔內折線是否存在
明顯的差異。下面介紹一下常用的幾種檢驗方法。
1、繪制時間序列散點圖。該方法只能直觀、粗略的看序列是否存在明顯的趨勢。
2、Daniel檢驗法。主要用於觀察序列是否存在著趨勢,不檢測自相關。該方法建立在Spearman相關系數基礎之上,
3、基於Kendall t 系數檢驗法。此檢驗法對序列進行n*(n-1)/2配對進行檢測。假如在一對觀測值中。
2. eviews中ADF檢驗識別序列平穩性
你的序列是不平穩的:
第一行寫著有單位根,並且比較明顯的,也就是常用回的判答斷方法就是,比較ADF檢驗值與5%臨界值的大小,你的序列ADF檢驗值要大於5%臨界值,所以不平穩。
你可以再看下一階差分是否具有單位根,就是比較一屆差分的ADF檢驗值與5%臨界值的大小,否則再看二階差分的。
如果二階都不單整,就要重新處理一下數據了。
3. 計量經濟學,求單位根檢驗結果分析
你做的是關於D(Y,2)的檢驗,看其是否是遵循unit root process。ADF test做檢驗的時候,需要指定lag length (也就內是滯後期,1個容lag length就是一個滯後期,x_{t-1} 相對於 x_{t})。如果不寫的話,EVIEWS會自動幫你制定從1個滯後期到8個滯後期,然後從中根據SIC(也叫BIC,看你怎麼寫了,叫Bayesian IC 還是叫Schwarts IC,公式都是一樣的。)找出最優的模型。
看來,根據BIC,EVIEWS認為只包含一個滯後期的模型是最優的模型。
4. 關於時間序列數據的計量經濟學論文先進行平穩性檢驗,是非平穩的,進
是的。所以在做回歸之前要對個每個變數做單根檢驗。Eviews里點unit root test,先選0階看看平穩不,若不平再選一階(level1),觀察平穩不。若到了二階還不平穩,那就最好放棄這個變數吧,因為三階差分後的各個變數之間關系不那麼強了,研究出來意義也不大。偽回歸還不是很討厭,多重共線才是硬傷啊。。。。
5. 有一組數據進行平穩性檢驗和格蘭傑因果關系檢驗
轉載的:
單位根檢驗、協整檢驗和格蘭傑因果關系檢驗三者之間的關系
實證檢驗步驟:先做單位根檢驗,看變數序列是否平穩序列,若平穩,可構造回歸模型等經典計量經濟學模型;若非平穩,進行差分,當進行到第i次差分時序列平穩,則服從i階單整(注意趨勢、截距不同情況選擇,根據P值和原假設判定)。若所有檢驗序列均服從同階單整,可構造VAR模型,做協整檢驗(注意滯後期的選擇),判斷模型內部變數間是否存在協整關系,即是否存在長期均衡關系。如果有,則可以構造VEC模型或者進行Granger因果檢驗,檢驗變數之間「誰引起誰變化」,即因果關系。
一、討論一
1、單位根檢驗是序列的平穩性檢驗,如果不檢驗序列的平穩性直接OLS容易導致偽回歸。
2、當檢驗的數據是平穩的(即不存在單位根),要想進一步考察變數的因果聯系,可以採用格蘭傑因果檢驗,但要做格蘭傑檢驗的前提是數據必須是平穩的,否則不能做。
3、當檢驗的數據是非平穩(即存在單位根),並且各個序列是同階單整(協整檢驗的前提),想進一步確定變數之間是否存在協整關系,可以進行協整檢驗,協整檢驗主要有EG兩步法和JJ檢驗
A、EG兩步法是基於回歸殘差的檢驗,可以通過建立OLS模型檢驗其殘差平穩性
B、JJ檢驗是基於回歸系數的檢驗,前提是建立VAR模型(即模型符合ADL模式)
4、當變數之間存在協整關系時,可以建立ECM進一步考察短期關系,Eviews這里還提供了一個Wald-Granger檢驗,但此時的格蘭傑已經不是因果關系檢驗,而是變數外生性檢驗,請注意識別
二、討論二
1、格蘭傑檢驗只能用於平穩序列!這是格蘭傑檢驗的前提,而其因果關系並非我們通常理解的因與果的關系,而是說x的前期變化能有效地解釋y的變化,所以稱其為「格蘭傑原因」。
2、非平穩序列很可能出現偽回歸,協整的意義就是檢驗它們的回歸方程所描述的因果關系是否是偽回歸,即檢驗變數之間是否存在穩定的關系。所以,非平穩序列的因果關系檢驗就是協整檢驗。
3、平穩性檢驗有3個作用:1)檢驗平穩性,若平穩,做格蘭傑檢驗,非平穩,作協正檢驗。2)協整檢驗中要用到每個序列的單整階數。3)判斷時間學列的數據生成過程。
三、討論三
其實很多人存在誤解。有如下幾點,需要澄清:
第一,格蘭傑因果檢驗是檢驗統計上的時間先後順序,並不表示而這真正存在因果關系,是否呈因果關系需要根據理論、經驗和模型來判定。
第二,格蘭傑因果檢驗的變數應是平穩的,如果單位根檢驗發現兩個變數是不穩定的,那麼,不能直接進行格蘭傑因果檢驗,所以,很多人對不平穩的變數進行格蘭傑因果檢驗,這是錯誤的。
第三,協整結果僅表示變數間存在長期均衡關系,那麼,到底是先做格蘭傑還是先做協整呢?因為變數不平穩才需要協整,所以,首先因對變數進行差分,平穩後,可以用差分項進行格蘭傑因果檢驗,來判定變數變化的先後時序,之後,進行協整,看變數是否存在長期均衡。
第四,長期均衡並不意味著分析的結束,還應考慮短期波動,要做誤差修正檢驗。
來自:
6. 檢驗時間序列平穩性的方法有哪兩種
1、 時間序列 取自某一個隨機過程,如果此隨機過程的隨機特徵不隨時間變化,則我們稱過程是平穩的;假如該隨機過程的隨機特徵隨時間變化,則稱過程是非平穩的。 2、 寬平穩時間序列的定義:設時間序列 ,對於任意的 , 和 ,滿足: 則稱 寬平穩。 3、Box-Jenkins方法是一種理論較為完善的統計預測方法。他們的工作為實際工作者提供了對時間序列進行分析、預測,以及對ARMA模型識別、估計和診斷的系統方法。使ARMA模型的建立有了一套完整、正規、結構化的建模方法,並且具有統計上的完善性和牢固的理論基礎。 4、ARMA模型三種基本形式:自回歸模型(AR:Auto-regressive),移動平均模型(MA:Moving-Average)和混合模型(ARMA:Auto-regressive Moving-Average)。 (1) 自回歸模型AR(p):如果時間序列 滿足 其中 是獨立同分布的隨機變數序列,且滿足: , 則稱時間序列 服從p階自回歸模型。或者記為 。 平穩條件:滯後運算元多項式 的根均在單位圓外,即 的根大於1。 (2) 移動平均模型MA(q):如果時間序列 滿足 則稱時間序列 服從q階移動平均模型。或者記為 。 平穩條件:任何條件下都平穩。 (3) ARMA(p,q)模型:如果時間序列 滿足 則稱時間序列 服從(p,q)階自回歸移動平均模型。或者記為 。 特殊情況:q=0,模型即為AR(p),p=0, 模型即為MA(q)。 二、時間序列的自相關分析 1、自相關分析法是進行時間序列分析的有效方法,它簡單易行、較為直觀,根據繪制的自相關分析圖和偏自相關分析圖,我們可以初步地識別平穩序列的模型類型和模型階數。利用自相關分析法可以測定時間序列的隨機性和平穩性,以及時間序列的季節性。 2、自相關函數的定義:滯後期為k的自協方差函數為: ,則 的自相關函數為: ,其中 。當序列平穩時,自相關函數可寫為: 。 3、 樣本自相關函數為: ,其中 ,它可以說明不同時期的數據之間的相關程度,其取值范圍在-1到1之間,值越接近於1,說明時間序列的自相關程度越高。 4、 樣本的偏自相關函數: 其中, 。 5、 時間序列的隨機性,是指時間序列各項之間沒有相關關系的特徵。使用自相關分析圖判斷時間序列的隨機性,一般給出如下准則: ①若時間序列的自相關函數基本上都落入置信區間,則該時間序列具有隨機性; ②若較多自相關函數落在置信區間之外,則認為該時間序列不具有隨機性。 6、 判斷時間序列是否平穩,是一項很重要的工作。運用自相關分析圖判定時間序列平穩性的准則是:①若時間序列的自相關函數 在k>3時都落入置信區間,且逐漸趨於零,則該時間序列具有平穩性;②若時間序列的自相關函數更多地落在置信區間外面,則該時間序列就不具有平穩性。 7、 ARMA模型的自相關分析 AR(p)模型的偏自相關函數 是以p步截尾的,自相關函數拖尾。MA(q)模型的自相關函數具有q步截尾性,偏自相關函數拖尾。這兩個性質可以分別用來識別自回歸模型和移動平均模型的階數。ARMA(p,q)模型的自相關函數和偏相關函數都是拖尾的。 三、單位根檢驗和協整檢驗 1、單位根檢驗 ①利用迪基—福勒檢驗( Dickey-Fuller Test)和菲利普斯—佩榮檢驗(Philips-Perron Test),我們也可以測定時間序列的隨機性,這是在計量經濟學中非常重要的兩種單位根檢驗方法,與前者不同的事,後一個檢驗方法主要應用於一階自回歸模型的殘差不是白雜訊,而且存在自相關的情況。 ②隨機游動 如果在一個隨機過程中, 的每一次變化均來自於一個均值為零的獨立同分布,即隨機過程 滿足: , ,其中 獨立同分布,並且: , 稱這個隨機過程是隨機游動。它是一個非平穩過程。 ③單位根過程 設隨機過程 滿足: , ,其中 , 為一個平穩過程並且 ,,。 2、協整關系 如果兩個或多個非平穩的時間序列,其某個現性組合後的序列呈平穩性,這樣的時間序列間就被稱為有協整關系存在。這是一個很重要的概念,我們利用Engle-Granger兩步協整檢驗法和J 很高興回答樓主的問題 如有錯誤請見諒
7. 計量經濟學論文中對時間序列數據進行平穩性檢驗後如果不是同階單整的怎麼辦
計量經濟學有資料,有文章的。