⑴ 計量經濟學F值與其所對應的P值之間的關系急求啊
(R^2/n-1)/{(1-R^2)n-k-1}
⑵ 統計學中的P值應該怎麼計算
P值的計算公式是
=2[1-Φ(z0)] 當被測假設H1為 p不等於p0時;專
=1-Φ(z0) 當被測假設H1為 p大於p0時;
=Φ(z0) 當被測假設H1為 p小於p0時;
總之,屬P值越小,表明結果越顯著。但是檢驗的結果究竟是「顯著的」、「中度顯著的」還是「高度顯著的」需要根據P值的大小和實際問題來解決。
(2)計量經濟學中的p值擴展閱讀
統計學中回歸分析的主要內容為:
1、從一組數據出發,確定某些變數之間的定量關系式,即建立數學模型並估計其中的未知參數。估計參數的常用方法是最小二乘法。
2、對這些關系式的可信程度進行檢驗。
3、在許多自變數共同影響著一個因變數的關系中,判斷哪個(或哪些)自變數的影響是顯著的,哪些自變數的影響是不顯著的,將影響顯著的自變數加入模型中,而剔除影響不顯著的變數,通常用逐步回歸、向前回歸和向後回歸等方法。
4、利用所求的關系式對某一生產過程進行預測或控制。回歸分析的應用是非常廣泛的,統計軟體包使各種回歸方法計算十分方便。
⑶ 計量經濟學中P值是什麼意思
相伴概率就是相應的統計量所對應的P值,他們是一一對應的,而且可以從兩個不同角度對假設檢驗的的原假設作出判斷
⑷ 計量經濟學中,給出F值和F的p值,怎麼判斷x對y的影響。求大神解答,謝謝。
首先看格蘭傑來因果關系檢驗,源x對y有影響,表現為X各滯後項前的參數整體不為零,而Y各滯後項前的參數整體為零。
格蘭傑檢驗是通過受約束的F檢驗完成的。原假設前參數整體為零。
題中F值很大,F分布表中最大的也就6106,在1%的顯著性水平下。所以可以肯定的說拒絕原假設,所以X2i和X3i對YI的聯合影響是顯著的,F的p值很小,其表示的是接受原假設的概率為零,所以百分百拒絕原假設,故影響是顯著的。另外題中沒有說F值是檢驗單個的,所以AB肯定是錯的。
⑸ 助計量經濟學高手!!P值與接受或拒絕原假設之間的關系是
通俗點說,那個復P值是指制「接近原假設的概率」,例如T統計量的P值,是指參數接近0的概率(因為原假設是參數為0),我們一般用5%的顯著性水平,如果P值小於0.05,即參數等於0的概率小於0.05,我們就可以認為,拒絕原假設了,即通過了顯著性檢驗。
⑹ 計量經濟學 p與t 數值含義
某變數的t值表示這一自變數對應變數影響的顯著性,一般不超過0.05都可以看做顯著,p值在不同的地方意義不同~
⑺ 如何計算統計學中的P值(200分)
P值即為拒絕域的面積或概率。
P值的計算公式是
=2[1-Φ(z0)] 當被測假設H1為 p不等於p0時;
=1-Φ(z0) 當被測假設H1為 p大於p0時;
=Φ(z0) 當被測假設H1為 p小於p0時;
總之,P值越小,表明結果越顯著。但是檢驗的結果究竟是「顯著的」、「中度顯著的」還是「高度顯著的」需要我們自己根據P值的大小和實際問題來解決。
p值是指在一個概率模型中,統計摘要(如兩組樣本均值差)與實際觀測數據相同,或甚至更大這一事件發生的概率。換言之,是檢驗假設零假設成立或表現更嚴重的可能性。
p值若與選定顯著性水平(0.05或0.01)相比更小,則零假設會被否定而不可接受。然而這並不直接表明原假設正確。p值是一個服從正態分布的隨機變數,在實際使用中因樣本等各種因素存在不確定性。產生的結果可能會帶來爭議。
⑻ 統計學中的P值怎樣計算
P值的計算公式抄是
=2[1-Φ(z0)] 當被測假襲設H1為 p不等於p0時;
=1-Φ(z0) 當被測假設H1為 p大於p0時;
=Φ(z0) 當被測假設H1為 p小於p0時;
總之,P值越小,表明結果越顯著。但是檢驗的結果究竟是「顯著的」、「中度顯著的」還是「高度顯著的」需要根據P值的大小和實際問題來解決。
(8)計量經濟學中的p值擴展閱讀
統計學中回歸分析的主要內容為:
1、從一組數據出發,確定某些變數之間的定量關系式,即建立數學模型並估計其中的未知參數。估計參數的常用方法是最小二乘法。
2、對這些關系式的可信程度進行檢驗。
3、在許多自變數共同影響著一個因變數的關系中,判斷哪個(或哪些)自變數的影響是顯著的,哪些自變數的影響是不顯著的,將影響顯著的自變數加入模型中,而剔除影響不顯著的變數,通常用逐步回歸、向前回歸和向後回歸等方法。
4、利用所求的關系式對某一生產過程進行預測或控制。回歸分析的應用是非常廣泛的,統計軟體包使各種回歸方法計算十分方便。
⑼ 統計學中的p值代表什麼
結果的統計學意義是結果真實程度(能夠代表總體)的一種估計方法。專業上,p值為結果可信程度的一個遞減指標,p值越大,我們越不能認為樣本中變數的關聯是總體中各變數關聯的可靠指標。p值是將觀察結果認為有效即具有總體代表性的犯錯概率。如p=0.05提示樣本中變數關聯有5%的可能是由於偶然性造成的。即假設總體中任意變數間均無關聯,我們重復類似實驗,會發現約20個實驗中有一個實驗,我們所研究的變數關聯將等於或強於我們的實驗結果。(這並不是說如果變數間存在關聯,我們可得到5%或95%次數的相同結果,當總體中的變數存在關聯,重復研究和發現關聯的可能性與設計的統計學效力有關。)在許多研究領域,0.05的p值通常被認為是可接受錯誤的邊界水平。
在最後結論中判斷什麼樣的顯著性水平具有統計學意義,不可避免地帶有武斷性。換句話說,認為結果無效而被拒絕接受的水平的選擇具有武斷性。實踐中,最後的決定通常依賴於數據集比較和分析過程中結果是先驗性還是僅僅為均數之間的兩兩>比較,依賴於總體數據集里結論一致的支持性證據的數量,依賴於以往該研究領域的慣例。通常,許多的科學領域中產生p值的結果≤0.05被認為是統計學意義的邊界線,但是這顯著性水平還包含了相當高的犯錯可能性。結果0.05≥p>0.01被認為是具有統計學意義,而0.01≥p≥0.001被認為具有高度統計學意義。但要注意這種分類僅僅是研究基礎上非正規的判斷常規。
所有的檢驗統計都是正態分布的嗎並不完全如此,但大多數檢驗都直接或間接與之有關,可以從正態分布中推導出來,如t檢驗、f檢驗或卡方檢驗。這些檢驗一般都要求:所分析變數在總體中呈正態分布,即滿足所謂的正態假設。許多觀察變數的確是呈正態分布的,這也是正態分布是現實世界的基本特徵的原因。當人們用在正態分布基礎上建立的檢驗分析非正態分布變數的數據時問題就產生了,(參閱非參數和方差分析的正態性檢驗)。這種條件下有兩種方法:一是用替代的非參數檢驗(即無分布性檢驗),但這種方法不方便,因為從它所提供的結論形式看,這種方法統計效率低下、不靈活。另一種方法是:當確定樣本量足夠大的情況下,通常還是可以使用基於正態分布前提下的檢驗。後一種方法是基於一個相當重要的原則產生的,該原則對正態方程基礎上的總體檢驗有極其重要的作用。即,隨著樣本量的增加,樣本分布形狀趨於正態,即使所研究的變數分布並不呈正態。