導航:首頁 > 經濟學法 > 計量經濟學方法

計量經濟學方法

發布時間:2020-11-26 00:09:56

『壹』 計量經濟學中多重共線性的檢驗方法有哪些

1、簡單相關系復數矩陣法(輔制助手段)

此法簡單易行;但要注意兩變數的簡單相關系數包含了其他變數的影響,並非它們真實的線性相關程度的反映,一般在0.8以上可初步判定它倆之間有線性相關。

2、變數顯著性與方程顯著性綜合判斷

(修正)可決系數大,F值顯著大於臨界值,而值不顯著;那麼可認為存在多重共線性。

3、輔助回歸

將每個解釋變數對其餘變數回歸,若某個回歸方程顯著成立,則該解釋變數和其餘變數有多重共線性。

(4)方差擴大(膨脹)因子法

(5)直觀判斷法

增加或者減少一個解釋變數,或者改變一個觀測值時,回歸參數發生較大變化。重要解釋變數沒有通過t檢驗。有些解釋變數的回歸系數符號與定性分析的相反。

(1)計量經濟學方法擴展閱讀:

解決方法

(1)、排除引起共線性的變數

找出引起多重共線性的解釋變數,將它排除出去,以逐步回歸法得到最廣泛的應用。

(2)、差分法

時間序列數據、線性模型:將原模型變換為差分模型。

(3)、減小參數估計量的方差:嶺回歸法(Ridge Regression)。

『貳』 計量經濟學方法與一般經濟學方法有何區別

計量經濟學本身就是一種經濟分析方法。

在經濟分析方法中,計量和建模就是比較基礎的分析方法。

往往計量和建模都是在一起來講的,相信樓主的書里也一定有建模的東西

『叄』 什麼是計量經濟學計量經濟學方法與

那經濟學的方法呢?一定要根據一個數量變數的變化

『肆』 計量經濟學怎麼學啊有什麼好的方法


第一、應該好好看看概率論與數理統計部分,因為計量的好多知識,與這部分有關,如果有那部分還不太熟悉,應該盡量補牢。
第二,就是選一本教材,比較主流的就是古扎拉蒂的和伍德里奇的書。感覺前者的書寫的還是挺通俗易懂的,一些例子還是挺典型的。很適合初學者自學或者跟著老師學習
第三、就是計量和實踐是緊密不分的,所以在學習過程中最好做一下題,尤其是課後題。
第四、就是學會一到兩種統計學軟體,比如SPSS等
如果打好基礎的話,想像高級方向學習,可以學習時間序列的知識。
總之,計量經濟學是一門實用的學科,有時候不必深究為什麼這樣。就像只要知道1+1=2就行了,不必追問1+1為什麼等於2
計量經濟學是以一定的經濟理論和統計資料為基礎,運用數學、統計學方法與電腦技術,以建立經濟計量模型為主要手段,定量分析研究具有隨機性特性的經濟變數關系。主要內容包括理論計量經濟學和應用經濟計量學。理論經濟計量學主要研究如何運用、改造和發展數理統計的方法,使之成為隨機經濟關系測定的特殊方法。應用計量經濟學是在一定的經濟理論的指導下,以反映事實的統計數據為依據,用經濟計量方法研究經濟數學模型的實用化或探索實證經濟規律。廣泛採用計算機組織教學,著重培養學生定量分析問題.解決問題的能力。

『伍』 計量經濟學方法論的主要步驟

您好,他的主要步驟的話,您可以直接翻你的課本。或者看一下你們的考試卷子,上面有沒有相關的題和相關的答案。

『陸』 計量經濟學 有什麼分析方法

1、最小二乘法

這是最簡單的線性回歸模型,只要有一個參數、一個誤差項就好了。但是它存在很多弊病,比如無法消除內生性(endogeneity)問題,因而經濟學界很少直接用它。如果要直接用最小二乘法,需要滿足幾大假設,條件非常苛刻。

2、工具變數法

工具變數法是現今經濟學界很流行的一種計量方法,它採用一種和自變數X無關的外生變數Z來作為一種「工具」,從而解決了內生性的問題。

3、雙重差分法

雙重差分法用時間和實驗、對照組兩個維度的變數,進行雙重差分,這種方法分析非常有效,不過數據收集量大,對數據質量要求高。


(6)計量經濟學方法擴展閱讀:

計量經濟學的學習方法:

1、研究對象發生了較大變化

即從研究確定性問題轉向非確定性問題,其對象的性質和意義將發生巨大的變化。因此,在方法的思路上、方法的性質上和方法的結果上,都將出現全新的變化。

2、研究方法發生根本變化

計量經濟學方法的基礎是概率論和數理統計,是一種新的數學形式。學習中要十分注意其基本概念和方法思路的理解和把握,要充分認識其方法與其它數學方法的根本不同之處。

3、研究的結果發生了變化

理論計量經濟學和應用‎計量經濟學 理論計量經濟學(Theoretical Econometrics)以介紹、研究計量經濟學的理論與方法為主要內容,側重於理論與方法的數學證明與推導,與數理統計聯系極為密切。

理論計量經濟學除了介紹計量經濟學模型的數學理論基礎和普遍應用的計量經濟學模型的參數估計方法與檢驗方法外,還研究特殊模型的估計方法與檢驗模型。

參考資料來源:網路—計量經濟學

『柒』 計量經濟學的S.E of regression怎麼算

計算公式為 RSS 除以 (n-k)(n為自由變數個數10,k為3) 再開根號。

S.E of regression的計算方法為:√(Sum squared resid(RSSS)/(n-k-1)),K為解析變數個數。

1)從經濟發展的形態來看,經濟模型分為靜態數理經濟模型和動態數理經濟模型;

2)從經濟的波動形態來看,經濟模型分為隨機經濟模型和確定性經濟模型;

3)從經濟的數學描述形式來看,經濟模型分為線性經濟模型和非線性經濟模型;

4)從經濟模型描述的范圍來看,經濟模型有微觀經濟模型、中觀經濟模型和宏觀經濟模型。

(7)計量經濟學方法擴展閱讀

計量經濟模型至少含有三個主要部分:數理經濟為主體,經濟統計為識別和經濟過程為主線。選擇正確的數理經濟模型是計量經濟模型建立的主體,這也是反映各經濟變數之間所存在的本質關系,具有經濟理論基礎;

經濟統計識別則是計量經濟模型賴於應用的基礎,只有在統計上有顯著意義的模型才可能保證各經濟變數之間的關系是具有統計基礎的;經濟過程描述了經濟體系中解釋變數和被解釋變數之間所存在的統計關系。

『捌』 如何用計量經濟學方法分析影響因素大小

一、理論模型的設計對所要研究的經濟現象進行深入的分析,根據研究的目的,選擇模型中將包含的因素,根據數據的可得性選擇適當的變數來表徵這些因素,並根據經濟行為理論和樣本數據顯示出的變數間的關系,設定描述這些變數之間關系的數學表達式,即理論模型。例如上節中的生產函數就是一個理論模型。理論模型的設計主要包含三部分工作,即選擇變數、確定變數之間的數學關系、擬定模型中待估計參數的數值范圍。1.確定模型所包含的變數在單方程模型中,變數分為兩類。作為研究對象的變數,也就是因果關系中的「果」,例如生產函數中的產出量,是模型中的被解釋變數;而作為「原因」的變數,例如生產函數中的資本、勞動、技術,是模型中的解釋變數。確定模型所包含的變數,主要是指確定解釋變數。可以作為解釋變數的有下列幾類變數:外生經濟變數、外生條件變數、外生政策變數和滯後被解釋變數。其中有些變數,如政策變數、條件變數經常以虛變數的形式出現。嚴格他說,上述生產函數中的產出量、資本、勞動、技術等,只能稱為「因素」,這些因素間存在著因果關系。為了建立起計量經濟學模型,必須選擇適當的變數來表徵這些因素,這些變數必須具有數據可得性。於是,我們可以用總產值來表徵產出量,用固走資產原值來表徵資本,用職工人數來表徵勞動,用時間作為一個變數來表徵技術。這樣,最後建立的模型是關於總產值、固定資產原值、職工人數和時間變數之間關系的數學表達式。下面,為了敘述方便,我們將「因素」與「變數」間的區別暫時略去,都以「變數」來表示。關鍵在於,在確定了被解釋變數之後,怎樣才能正確地選擇解釋變數。首先,需要正確理解和把握所研究的經濟現象中暗含的經濟學理論和經濟行為規律。這是正確選擇解釋變數的基礎。例如,在上述生產問題中,已經明確指出屬於供給不足的情況,那麼,影響產出量的因素就應該在投入要素方面,而在當前,一般的投入要素主要是技術、資本與勞動。如果屬於需求不足的情況,那麼影響產出量的因素就應該在需求方面,而不在投入要素方面。這時,如果研究的對象是消費品生產,應該選擇居民收入等變數作為解釋變數;如果研究的對象是生產資料生產,應該選擇固定資產投資總額等變數作為解釋變數。由此可見,同樣是建立生產模型,所處的經濟環境不同、研究的行業不同,變數選擇是不同的。其次,選擇變數要考慮數據的可得性。這就要求對經濟統計學有透徹的了解。計量經濟學模型是要在樣本數據,即變數的樣本觀測值的支持下,採用一定的數學方法估計參數,以揭示變數之間的定量關系。所以所選擇的變數必須是統計指標體系中存在的、有可靠的數據來源的。如果必須引入個別對被解釋變數有重要影響的政策變數、條件變數,則採用虛變數的樣本觀測值的選取方法。第三,選擇變數時要考慮所有入選變數之間的關系,使得每一個解釋變數都是獨立的。這是計量經濟學模型技術所要求的。當然,在開始時要做到這一點是困難的,如果在所有入選變數中出現相關的變數,可以在建模過程中檢驗並予以剔除。從這里可以看出,建立模型的第一步就已經體現了計量經濟學是經濟理論、經濟統計學和數學三者結合的思想。在選擇變數時,錯誤是容易發生的。下面的例子都是從已有的計量經濟學應用研究成果中發現的,代表了幾類容易發生的錯誤。例如農副產品出口額=-107.66+0.13×社會商品零售總額十0.22×農副產品收購額這里選擇了無關的變數,因為社會商品零售總額與農副產品出口額無直接關系,更不是影響農副產品出口額的原因。再如生產資料進口額=0.73×輕工業投資+0.21×出口額+0.18×生產消費+67.60×進出口政策這里選擇了不重要的變數,因為輕工業投資對生產資料進口額雖有影響,但不是重要的,或者說是不完全的,重要的是全社會固定資產投資額,應該選擇這個變數。再如農業總產值=0.78+0.24×糧食產量+0.05×農機動力—0.21×受災面積這里選擇了不獨立的變數,因為糧食產量是受農機動力和受災面積影響的,它們之間存在相關性。值得注意的是上述幾個模型都能很好地擬合樣本數據,所以絕對不能把對樣本數據的擬合程度作為判斷模型變數選擇是否正確的主要標准。變數的選擇不是一次完成的,往往要經過多次反復。2.確定模型的數學形式選擇了適當的變數,接下來就要選擇適當的數學形式描述這些變數之間的關系,即建立理論模型。選擇模型數學形式的主要依據是經濟行為理論。在數理經濟學中,已經對常用的生產函數、需求函數、消費函數、投資函數等模型的數學形式進行了廣泛的研究,可以借鑒這些研究成果。需要指出的是,現代經濟學尤其注重實證研究,任何建立在一定經濟學理論假設基礎上的理論模型,如果不能很好地解釋過去,尤其是歷史統計數據,那麼它是不能為人們所接受的。這就要求理論模型的建立要在參數估計、模型檢驗的全過程中反復修改,以得到一種既能有較好的經濟學解釋又能較好地反映歷史上已經發生的諸變數之間關系的數學模型。忽視任何一方面都是不對的。也可以根據變數的樣本數據作出解釋變數與被解釋變數之間關系的散點圖,由散點圖顯示的變數之間的函數關系作為理論模型的數學形式。這也是人們在建模時經常採用的方法。在某些情況下,如果無法事先確定模型的數學形式,那麼就採用各種可能的形式進行試模擬,然後選擇模擬結果較好的一種。3.擬定理論模型中待估參數的理論期望值理論模型中的待估參數一般都具有特定的經濟含義,它們的數值,要待模型估計、檢驗後,即經濟數學模型完成後才能確定,但對於它們的數值范圍,即理論期望值,可以根據它們的經濟含義在開始時擬定。這一理論期望值可以用來檢驗模型的估計結果。擬定理論模型中待估參數的理論期望值,關鍵在於理解待估參數的經濟含義。例如上述生產函數理論模型中有4個待估參數和α、β、γ和A。其中,α是資本的產出彈性,β是勞動的產出彈性,γ近似為技術進步速度,A是效率系數。根據這些經濟含義,它們的數值范圍應該是於集中的問題。經濟變數在時間序列上的變化往往是緩慢的,例如,居民收入每年的變化幅度只有5%左右。如果在一個消費函數模型中,以居民消費作為被解釋變數,以居民收入作為解釋變數,以它的時間序列數據作為解釋變數的樣本數據,由於樣本數據過於集中,所建立的模型很難反映兩個變數之間的長期關系。這也是時間序列不適宜於對模型中反映長期變化關系的結構參數的估計的一個主要原因。四是模型隨機誤差項的序列相關問題。用時間序列數據作樣本,容易引起模型隨機誤差項產生序列相關。這個問題後面還要專門討論。截面數據是一批發生在同一時間截面上的調查數據。例如,工業普查數據、人口普查數據、家計調查數據等,主要由統計部門提供。用截面數據作為計量經濟學模型的樣本數據,應注意以下幾個問題。一是樣本與母體的一致性問題。計量經濟學模型的參數估計,從數學上講,是用從母體中隨機抽取的個體樣本估計母體的參數,那麼要求母體與個體必須是一致的。例如,估計煤炭企業的生產函數模型,只能用煤炭企業的數據作為樣本,不能用煤炭行業的數據。那麼,截面數據就很難用於一些總量模型的估計,例如,建立煤炭行業的生產函數模型,就無法得到合適的截面數據。二是模型隨機誤差項的異方差問題。用截面數據作樣本,容易引起模型隨機誤差項產生異方差。這個問題後面還要專門討論。虛變數數據也稱為二進制數據,一般取0或1。虛變數經常被用在計量經濟學模型中,以表徵政策、條件等因素。例如,建立我國的糧食生產計量經濟學模型,以糧食產量作為被解釋變數,解釋變數中除了播種面積、化肥使用量、農機總動力、成災面積等變數外,顯然,政策因素是不可忽略的。1980年前後,由於實行了不同的政策,即使上述變數都沒有變化,糧食產量也會發生大的變化。於是必須在解釋變數中引人政策變數,用一個虛變數表示,對於1980年以後的年份,該虛變數的樣本觀測值為1,對於1980年以前的年份,該虛變數的樣本觀測值為0。也可以取0、l以外的數值,表示該因素的變化程度。例如,在工業生產模型中用虛變數表示氣候對工業生產的影響,可以將不同年份氣候的影響程度,分別用0、1、-1,甚至0.5、-0.5等表示。不過,這種方法應慎用,以免違背客觀性。2.樣本數據的質量樣本數據的質量問題大體上可以概括為完整性、准確性、可比性和一致性四個方面。完整性,即模型中包含的所有變數都必須得到相同容量的樣本觀測值。這既是模型參數估計的需要,也是經濟現象本身應該具有的特徵。但是,在實際中,「遺失數據」的現象是經常發生的,尤其在中國,經濟體制和核算體系都處於轉軌之中。在出現「遺失數據」時,如果樣本容量足夠大,樣本點之間的聯系並不緊密的情況下,可以將「遺失數據」所在的樣本點整個地去掉;如果樣本容量有限,或者樣本點之間的聯系緊密,去掉某個樣本點會影響模型的估計質量,則要採取特定的技術將「遺失數據」補上。准確性,有兩方面含義,一是所得到的數據必須准確反映它所描述的經濟因素的狀態,即統計數據或調查數據本身是准確的;二是它必須是模型研究中所准確需要的,即滿足模型對變數口徑的要求。前一個方面是顯而易見的,而後一個方面則容易被忽視。例如,在生產函數模型中,作為解釋變數的資本、勞動等必須是投入到生產過程中的、對產出量起作用的那部分生產要素,以勞動為例,應該是投入到生產過程中的、對產出量起作用的那部分勞動者。於是,在收集樣本數據時,就應該收集生產性職工人數,而不能以全體職工人數作為樣本數據,盡管全體職工人數在統計上是很准確的,但其中有相當一部分與生產過程無關,不是模型所需要的。可比性,也就是通常所說的數據口徑問題,在計量經濟學模型研究中可以說無處不在。而人們容易得到的經濟統計數據,一般可比性較差,其原因在於統計范圍口徑的變化和價格口徑的變化,必須進行處理後才能用於模型參數的估計。計量經濟學方法,是從樣本數據中尋找經濟活動本身客觀存在的規律性,如果數據是不可比的,得到的規律性就難以反映實際。不同的研究者研究同一個經濟現象,採用同樣的變數和數學形式,選擇的樣本點也相同,但可能得到相差甚遠的模型參數估計結果。為什麼?原因在於樣本數據的可比性。例如,採用時間序列數據作為生產函數模型的樣本數據,產出量用不變價格計算的總產值,在不同年份間是可比的;資本用當年價格計算的固定資產原值,在不同年份間是不可比的。對於統計資料中直接提供的這個用當年價格計算的固定資產原值,有人直接用於模型估計,有人進行處理後再用於模型的估計,結果當然不會相同。一致性,即母體與樣本的一致性。上面在討論用截面數據作為計量經濟學模型的樣本數據時已經作了介紹。違反一致性的情況經常會發生,例如,用企業的數據作為行業生產函數模型的樣本數據,用人均收入與消費的數據作為總量消費函數模型的樣本數據,用31個省份的數據作為全國總量模型的樣本數據,等等。三、模型參數的估計模型參數的估計方法,是計量經濟學的核心內容。在建立了理論模型並收集整理了符合模型要求的樣本數據之後,就可以選擇適當的方法估計模型,得到模型參數的估計量。模型參數的估計是一個純技術的過程,包括對模型進行識別(對聯立方程模型而言)、估計方法的選擇、軟體的應用等內容。在後面的章節中將用大量的篇幅討論估計問題,在此不重復敘述。四、模型的檢驗在模型的參數估計量已經得到後,可以說一個計量經濟學模型已經初步建立起來了。但是,它能否客觀揭示所研究的經濟現象中諸因素之間的關系,能否付諸應用,還要通過檢驗才能決定。一般講,計量經濟學模型必須通過四級檢驗,即經濟意義檢驗、統計學檢驗、計量經濟學檢驗和預測檢驗。1.經濟意義檢驗經濟意義檢驗主要檢驗模型參數估計量在經濟意義上的合理性。主要方法是將模型參數的估計量與預先擬定的理論期望值進行比較,包括參數估計量的符號、大小、相互之間的關系,以判斷其合理性。首先檢驗參數估計量的符號。例如,有下列煤炭行業生產模型:煤炭產量=-108.5427+0.00067×固定資產原值+0.01527×職工人數-0.00681×電力消耗量+0.00256×木材消耗量在該模型中,電力消耗量前的參數估計量為負,意味著電力消耗越多,煤炭產量越低,從經濟行為上無法解釋。模型不能通過檢驗,應該找出原因重新建立模型。不管其他方面的質量多麼高,模型也是沒有實際價值的。2.統計檢驗統計檢驗是由統計理論決定的,目的在於檢驗模型的統計學性質。通常最廣泛應用的統計檢驗准則有擬合優度檢驗、變數和方程的顯著性檢驗等。3.計量經濟學檢驗計量經濟學檢驗是由計量經濟學理論決定的,目的在於檢驗模型的計量經濟學性質。通常最主要的檢驗准則有隨機誤差項的序列相關檢驗和異方差性檢驗,解釋變數的多重共線性檢驗等。4.模型預測檢驗預測檢驗主要檢驗模型參數估計量的穩定性以及相對樣本容量變化時的靈敏度,確定所建立的模型是否可以用於樣本觀測值以外的范圍,即模型的所謂超樣本特性。具體檢驗方法為:(1)利用擴大了的樣本重新估計模型參數,將新的估計值與原來的估計值進行比較,並檢驗二者之間差距的顯著性;(2)將所建立的模型用於樣本以外某一時期的實際預測,並將該預測值與實際觀測值進行比較,並檢驗二者之間差距的顯著性。經歷並通過了上述步驟的檢驗後,可以說已經建立了所需要的計量經濟學模型,可以將它應用於預定的目的。五、計量經濟學模型成功三要素從上述建立計量經濟學模型的步驟中,不難看出,任何一項計量經濟學研究、任何一個計量經濟學模型賴以成功的要素應該有三個:理論、方法和數據。理論,即經濟理論,所研究的經濟現象的行為理論,是計量經濟學研究的基礎。方法,主要包括模型方法和計算方法,是計量經濟學研究的工具與手段,是計量經濟學不同於其他經濟學分支學科的主要特徵。數據,反映研究對象的活動水平、相互間聯系以及外部環境的數據,或更廣義講是信息,是計量經濟學研究的原料。這三方面缺一不可。一般情況下,在計量經濟學研究中,方法的研究是人們關注的重點,方法的水平往往成為衡量一項研究成果水平的主要依據。這是正常的。計量經濟學理論方法的研究是計量經濟學研究工作者義不容辭的義務。但是,不能因此而忽視對經濟學理論的探討,一個不懂得經濟學理論、不了解經濟行為的人,是無法從事計量經濟學研究工作的,是不可能建立起一個哪怕是極其簡單的計量經濟學模型的。所以,計量經濟學家首先應該是一個經濟學家。相比之下,人們對數據,尤其是數據質量問題的重視更顯不足,在申請一項研究項目或評審一項研究成果時,對數據的可得性、可用性、可靠性缺乏認真的推敲;在研究過程中出現問題時,較少從數據質量方面去找原因。而目前的實際情況是,數據已經成為制約計量經濟學發展的重要問題。六、相關分析、回歸分析和因果分析從上述建立計量經濟學模型的步驟中進一步看出,經典計量經濟學方法的核心是採用回歸分析的方法揭示變數之間的因果關系。但是,變數之間具有相關性並不等於具有因果性。這是建立計量經濟學模型中一個十分重要的概念,那麼首先需要對相關關系與因果關系作一簡要的說明。所謂相關關系,是指兩個以上的變數的樣本觀測值序列之間表現出來的隨機數學關系,用相關系數來衡量。如果兩個變數樣本觀測值序列之間相關系數的絕對值為1,則二者之間具有完全相關性(完全正相關或完全負相關);如果相關系數的絕對值比較大,或接近於1,則二者之間具有較強相關性;如果相關系數的絕對值為0,或接近於0,則二者之間不具有相關性。如果一個變數與其他兩個或兩個以上變數的線性組合之間具有相關性,那麼它與每一個變數之間的相關系數稱為偏相關系數。相關關系是變數之間所表現出來的一種純數學關系,判斷變數之間是否具有相關關系的依據只有數據。所謂因果關系,是指兩個或兩個以上變數在行為機制上的依賴性,作為結果的變數是由作為原因的變數所決定的,原因變數的變化引起結果變數的變化。因果關系有單向因果關系和互為因果關系之分。例如,勞動力與國內生產總值之間具有單向因果關系,在經濟行為上是勞動力影響國內生產總值,而不是相反;但是,在國內生產總值與消費總額之間則存在經濟行為上的互為因果關系,國內生產總值既決定消費總額,反過來又受消費的拉動。具有因果關系的變數之間一定具有數學上的相關關系。而具有相關關系的變數之間並不一定具有因果關系。例如中國的國內生產總值與印度的人口之間具有較強的相關性,因為二者都以較快的速度增長,但顯然二者之間不具有因果關系。相關分析是判斷變數之間是否具有相關關系的數學分析方法,通過計算變數之間的相關系數來實現。回歸分析也是判斷變數之間是否具有相關關系的一種數學分析方法,它著重判斷一個隨機變數與一個或幾個可控變數之間是否具有相關關系。由於它的特定的功能,所以也被用來進行變數之間的因果分析。但是,僅僅依靠回歸分析尚不能對變數之間的因果關系作出最後判斷,必須與經濟行為的定性分析相結合。這就是上面強調的建立計量經濟學模型的三要素。

『玖』 計量經濟學 要先學什麼課程呢 要有經濟學的基礎嗎

計量經濟學先導課程包括理論計量經濟學和應用經濟計量學,計量經濟學是以數理經濟學和數理統計學為方法論基礎,對於經濟問題試圖對理論上的數量接近和經驗(實證)上的數量接近這兩者進行綜合而產生的經濟學分支。所以,學習計量經濟學必須要有好的經濟學基礎。

理論經濟計量學主要研究如何運用、改造和發展數理統計的方法,使之成為經濟關系測定的特殊方法。應用計量經濟學是在一定的經濟理論的指導下,以反映事實的統計數據為依據,用經濟計量方法研究經濟數學模型的實用化或探索實證經濟規律。

計量經濟學的基礎是一整套建立在數理統計理論上的計量方法,屬於計量經濟學的「硬體」,計量經濟學的主要用途或目的主要有兩個方面:

1、理論檢驗。這是計量經濟學用途最為主要的和可靠的方面。這也是計量經濟學本身的一個主要內容。

2、預測應用。從理論研究和方法的最終目的看,預測(包括政策評價)當然是計量經濟學最終任務,必須注意學習和了解,但其預測的可靠性或有效性是我們應十分注意的。

(9)計量經濟學方法擴展閱讀

與一般的數學方法相比,計量經濟學方法有十分重要的特點和意義:

研究對象發生了較大變化。即從研究確定性問題轉向非確定性問題,其對象的性質和意義將發生巨大的變化。因此,在方法的思路上、方法的性質上和方法的結果上,都將出現全新的變化。

研究方法發生根本變化。計量經濟學方法的基礎是概率論和數理統計,是一種新的數學形式。學習中要十分注意其基本概念和方法思路的理解和把握,要充分認識其方法與其它數學方法的根本不同之處。

計量經濟學模型的結論是概率意義上的,也可以說是不太確定的。但真正要理解其不確定性的含義,並不那麼簡單,學習中需要始終關注這一點。理論計量經濟學和應用‎計量經濟學 理論計量經濟學以介紹、研究計量經濟學的理論與方法為主要內容。

側重於理論與方法的數學證明與推導,與數理統計聯系極為密切。理論計量經濟學除了介紹計量經濟學模型的數學理論基礎和普遍應用的計量經濟學模型的參數估計方法與檢驗方法外,還研究特殊模型的估計方法與檢驗模型。

『拾』 計量經濟學方法與一般經濟數學方法有什麼區別

經濟計量學是關於如何確定經濟關系中的實際數值的分支學科.經濟學的核心是統計學,經濟是通過統計學進行計量和分析的,社會統計學以變數為基礎,數理統計學以隨機變數為基礎。
計量經濟學是以一定的經濟理論和統計資料為基礎,運用數學、統計學方法與電腦技術,以建立經濟計量模型為主要手段,定量分析研究具有經濟變數和隨機變數關系.

閱讀全文

與計量經濟學方法相關的資料

熱點內容
中天高科國際貿易 瀏覽:896
都勻經濟開發區2018 瀏覽:391
輝縣農村信用社招聘 瀏覽:187
鶴壁市靈山文化產業園 瀏覽:753
國際金融和國際金融研究 瀏覽:91
烏魯木齊有農村信用社 瀏覽:897
重慶農村商業銀行ipo保薦機構 瀏覽:628
昆明市十一五中葯材種植產業發展規劃 瀏覽:748
博瑞盛和苑經濟適用房 瀏覽:708
即墨箱包貿易公司 瀏覽:720
江蘇市人均gdp排名2015 瀏覽:279
市場用經濟學一覽 瀏覽:826
中山2017年第一季度gdp 瀏覽:59
中國金融證券有限公司怎麼樣 瀏覽:814
國內金融機構的現狀 瀏覽:255
西方經濟學自考論述題 瀏覽:772
汽車行業產業鏈發展史 瀏覽:488
創新文化產業發展理念 瀏覽:822
國際貿易開題報告英文參考文獻 瀏覽:757
如何理解管理經濟學 瀏覽:22