導航:首頁 > 金融學業 > 基因金融學

基因金融學

發布時間:2021-02-16 13:30:25

㈠ 對於基因您了解多少

基因
人體基因組圖譜好比是一張能說明構成每一個人體細胞脫氧核糖核酸(dna)的30億個鹼基對精確排列的「地圖」。科學家們認為,通過對每一個基因的測定,人們將能夠找到新的方法來治療和預防許多疾病,如癌症和心臟病等。該圖非常形象地把基因家族的各種基因描繪出來。

基因家族種類示意圖:

【基因概述】

基因(Gene,Mendelian factor)是指攜帶有遺傳信息的DNA或RNA序列,也稱為遺傳因子。是控制性狀的基本遺傳單位。基因通過指導蛋白質的合成來表達自己所攜帶的遺傳信息,從而控制生物個體的性狀表現。

【基因特點】

基因有兩個特點,一是能忠實地復制自己,以保持生物的基本特徵;二是基因能夠「突變」,突變大絕大多數會導致疾病,另外的一小部分是非致病突變。非致病突變給自然選擇帶來了原始材料,使生物可以在自然選擇中被選擇出最適合自然的個體。

含特定遺傳信息的核苷酸序列,是遺傳物質的最小功能單位。除某些病毒的基因由核糖核酸(RNA)構成以外,多數生物的基因由脫氧核糖核酸(DNA)構成,並在染色體上作線狀排列。基因一詞通常指染色體基因。在真核生物中,由於染色體都在細胞核內,所以又稱為核基因。位於線粒體和葉綠體等細胞器中的基因則稱為染色體外基因、核外基因或細胞質基因,也可以分別稱為線粒體基因、質粒和葉綠體基因。

在通常的二倍體的細胞或個體中,能維持配子或配子體正常功能的最低數目的一套染色體稱為染色體組或基因組,一個基因組中包含一整套基因。相應的全部細胞質基因構成一個細胞質基因組,其中包括線粒體基因組和葉綠體基因組等。原核生物的基因組是一個單純的DNA或RNA分子,因此又稱為基因帶,通常也稱為它的染色體。

基因在染色體上的位置稱為座位,每個基因都有自己特定的座位。凡是在同源染色體上占據相同座位的基因都稱為等位基因。在自然群體中往往有一種佔多數的(因此常被視為正常的)等位基因,稱為野生型基因;同一座位上的其他等位基因一般都直接或間接地由野生型基因通過突變產生,相對於野生型基因,稱它們為突變型基因。在二倍體的細胞或個體內有兩個同源染色體,所以每一個座位上有兩個等位基因。如果這兩個等位基因是相同的,那麼就這個基因座位來講,這種細胞或個體稱為純合體;如果這兩個等位基因是不同的,就稱為雜合體。在雜合體中,兩個不同的等位基因往往只表現一個基因的性狀,這個基因稱為顯性基因,另一個基因則稱為隱性基因。在二倍體的生物群體中等位基因往往不止兩個,兩個以上的等位基因稱為復等位基因。不過有一部分早期認為是屬於復等位基因的基因,實際上並不是真正的等位,而是在功能上密切相關、在位置上又鄰接的幾個基因,所以把它們另稱為擬等位基因。某些表型效應差異極少的復等位基因的存在很容易被忽視,通過特殊的遺傳學分析可以分辨出存在於野生群體中的幾個等位基因。這種從性狀上難以區分的復等位基因稱為同等位基因。許多編碼同工酶的基因也是同等位基因。

屬於同一染色體的基因構成一個連鎖群(見連鎖和交換)。基因在染色體上的位置一般並不反映它們在生理功能上的性質和關系,但它們的位置和排列也不完全是隨機的。在細菌中編碼同一生物合成途徑中有關酶的一系列基因常排列在一起,構成一個操縱子(見基因調控);在人、果蠅和小鼠等不同的生物中,也常發現在作用上有關的幾個基因排列在一起,構成一個基因復合體或基因簇或者稱為一個擬等位基因系列或復合基因。

【認識的發展】

從孟德爾定律的發現到現在,100多年來人們對基因的認識在不斷地深化。

1866年,奧地利學者G.J.孟德爾在他的豌豆雜交實驗論文中,用大寫字母A、B等代表顯性性狀如圓粒、子葉黃色等,用小寫字母a、b等代表隱性性狀如皺粒、子葉綠色等。他並沒有嚴格地區分所觀察到的性狀和控制這些性狀的遺傳因子。但是從他用這些符號所表示的雜交結果來看,這些符號正是在形式上代表著基因,而且至今在遺傳學的分析中為了方便起見仍沿用它們來代表基因。

20世紀初孟德爾的工作被重新發現以後,他的定律又在許多動植物中得到驗證。1909年丹麥學者W.L.約翰森提出了基因這一名詞,用它來指任何一種生物中控制任何性狀而其遺傳規律又符合於孟德爾定律的遺傳因子,並且提出基因型和表(現)型這樣兩個術語,前者是一個生物的基因成分,後者是這些基因所表現的性狀。

1910年美國遺傳學家兼胚胎學家T.H.摩爾根在果蠅中發現白色復眼 (white eye,W)突變型,首先說明基因可以發生突變,而且由此可以知道野生型基因W+具有使果蠅的復眼發育成為紅色這一生理功能。1911年摩爾根又在果蠅的 X連鎖基因白眼和短翅兩品系的雜交子二代中,發現了白眼、短翅果蠅和正常的紅眼長翅果蠅,首先指出位於同一染色體上的兩個基因可以通過染色體交換而分處在兩個同源染色體上。交換是一個普遍存在的遺傳現象,不過直到40年代中期為止,還從來沒有發現過交換發生在一個基因內部的現象。因此當時認為一個基因是一個功能單位,也是一個突變單位和一個交換單位。

40年代以前,對於基因的化學本質並不了解。直到1944年 O.T.埃弗里等證實肺炎雙球菌的轉化因子是DNA,才首次用實驗證明了基因是由 DNA構成。

1955年S.本澤用大腸桿菌T4噬菌體作材料,研究快速溶菌突變型rⅡ的基因精細結構,發現在一個基因內部的許多位點上可以發生突變,並且可以在這些位點之間發生交換,從而說明一個基因是一個功能單位,但並不是一個突變單位和交換單位,因為一個基因可以包括許多突變單位(突變子)和許多重組單位(重組子)(見互補作用)。

1969年J.夏皮羅等從大腸桿菌中分離到乳糖操縱子,並且使它在離體條件下進行轉錄,證實了一個基因可以離開染色體而獨立地發揮作用,於是顆粒性的遺傳概念更加確立。隨著重組DNA技術和核酸的順序分析技術的發展,對基因的認識又有了新的發展,主要是發現了重疊的基因、斷裂的基因和可以移動位置的基因。

【重疊基因的發現】

重疊基因是在1977年發現的。早在1913年A.H.斯特蒂文特已在果蠅中證明了基因在染色體上作線狀排列,50年代對基因精細結構和順反位置效應等研究的結果也說明基因在染色體上是一個接著一個排列而並不重疊。但是1977年F.桑格在測定噬菌體ΦX174的DNA的全部核苷酸序列時,卻意外地發現基因D中包含著基因E(圖1)。基因E的第一個密碼子(見遺傳密碼)從基因D的中央的一個密碼子TAT的中間開始,因此兩個部分重疊的基因所編碼的兩個蛋白質非但大小不等,而且氨基酸也不相同。在某些真核生物病毒中也發現有重疊基因。

斷裂的基因也是在1977年發現的,它是內部包含一段或幾段最後不出現在成熟的mRNA中的片段的基因。這些不出現在成熟的mRNA中的片段稱為內含子,出現在成熟的mRNA中的片段則稱為外顯子。例如下面這一基因(圖2)有三個外顯子和兩個內含子。在幾種哺乳動物的核基因、酵母菌的線粒體基因以及某些感染真核生物的病毒中都發現了斷裂的基因。內含子的功用以及轉錄後的加工機制是真核生物分子遺傳學的一個吸引人的課題。

可以移動位置的基因(見轉座因子)首先於40年代中在玉米中由B.麥克林托克發現,當時並沒有受到重視。60年代末在細菌中發現一類稱為插入序列的可以轉移位置的遺傳因子IS,它們本身沒有表型效應,可是在插入別的基因中間時能引起插入突變。70年代早期又發現細菌質粒上的某些抗葯性基因可以轉移位置。細菌中的這類轉座子(Tn)到80年代已經發現不下20種,它們分別帶有不同的抗葯性基因,能在不同的復制子之間轉移位置,例如從質粒轉移到染色體、噬菌體以及別的質粒上等。當他們轉移到某一基因中間時,便引起一個插入突變。類似於細菌轉座子的可以轉移位置的遺傳因子在玉米以外的真核生物中也已經發現,例如酵母菌中的接合因子基因,以及果蠅白眼基因中的轉座因子等。轉座因子的研究也已成為分子遺傳學中的一個重要方面。

功能、類別和數目 到目前為止在果蠅中已經發現的基因不下於1000個, 在大腸桿菌中已經定位的基因大約也有1000個,由基因決定的性狀雖然千差萬別,但是許多基因的原初功能卻基本相同。

功能 1945年G.W.比德爾通過對脈孢菌的研究,提出了一個基因一種酶假設,認為基因的原初功能都是決定蛋白質的一級結構(即編碼組成肽鏈的氨基酸序列)。這一假設在50年代得到充分的驗證。

【基因的類別】

60年代初F.雅各布和J.莫諾發現了調節基因。把基因區分為結構基因和調節基因是著眼於這些基因所編碼的蛋白質的作用:凡是編碼酶蛋白、血紅蛋白、膠原蛋白或晶體蛋白等蛋白質的基因都稱為結構基因;凡是編碼阻遏或激活結構基因轉錄的蛋白質的基因都稱為調節基因。但是從基因的原初功能這一角度來看,它們都是編碼蛋白質。根據原初功能(即基因的產物)基因可分為:①編碼蛋白質的基因。包括編碼酶和結構蛋白的結構基因以及編碼作用於結構基因的阻遏蛋白或激活蛋白的調節基因。②沒有翻譯產物的基因。轉錄成為RNA以後不再翻譯成為蛋白質的轉移核糖核酸(tRNA)基因和核糖體核酸(rRNA)基因:③不轉錄的DNA區段。如啟動區、操縱基因等等。前者是轉錄時RNA多聚酶開始和DNA結合的部位;後者是阻遏蛋白或激活蛋白和DNA結合的部位。已經發現在果蠅中有影響發育過程的各種時空關系的突變型,控制時空關系的基因有時序基因 、格局基因 、選擇基因等(見發生遺傳學)。

一個生物體內的各個基因的作用時間常不相同,有一部分基因在復制前轉錄,稱為早期基因;有一部分基因在復制後轉錄,稱為晚期基因。一個基因發生突變而使幾種看來沒有關系的性狀同時改變,這個基因就稱為多效基因。

數目 不同生物的基因數目有很大差異,已經確知RNA噬菌體MS2隻有3個基因,而哺乳動物的每一細胞中至少有100萬個基因。但其中極大部分為重復序列,而非重復的序列中,編碼肽鏈的基因估計不超過10萬個。除了單純的重復基因外,還有一些結構和功能都相似的為數眾多的基因,它們往往緊密連鎖,構成所謂基因復合體或叫做基因家族。

【相互作用】

生物的一切表型都是蛋白質活性的表現。換句話說,生物的各種性狀幾乎都是基因相互作用的結果。所謂相互作用,一般都是代謝產物的相互作用,只有少數情況涉及基因直接產物,即蛋白質之間的相互作用。

【非等位基因的相互作用 】

依據非等位基因相互作用的性質可以將它們歸納為:

①互補基因。若干非等位基因只有同時存在時才出現某一性狀,其中任何一個發生突變時都會導致同一突變型性狀,這些基因稱為互補基因。

②異位顯性基因。影響同一性狀的兩個非等位基因在一起時,得以表現性狀的基因稱為異位顯性基因或稱上位基因。

③累加基因。對於同一性狀的表型來講,幾個非等位基因中的每一個都只有部分的影響,這樣的幾個基因稱為累加基因或多基因。在累加基因中每一個基因只有較小的一部分表型效應,所以又稱為微效基因。相對於微效基因來講,由單個基因決定某一性狀的基因稱為主效基因。

④修飾基因。本身具有或者沒有任何錶型效應,可是和另一突變基因同時存在便會影響另一基因的表現程度的基因。如果本身具有同一表型效應則和累加基因沒有區別。

⑤抑制基因。一個基因發生突變後使另一突變基因的表型效應消失而恢復野生型表型,稱前一基因為後一基因的抑制基因。如果前一基因本身具有表型效應則抑制基因和異位顯性基因沒有區別。

⑥調節基因。一個基因如果對另一個或幾個基因具有阻遏作用或激活作用則稱該基因為調節基因。調節基因通過對被調節的結構基因轉錄的控制而發揮作用。具有阻遏作用的調節基因不同於抑制基因,因為抑制基因作用於突變基因而且本身就是突變基因,調節基因則作用於野生型基因而且本身也是野生型基因。

⑦微效多基因。影響同一性狀的基因為數較多,以致無法在雜交子代中明顯地區分它們的類型,這些基因統稱為微效多基因或稱多基因。

⑧背景基因型。從理論上看,任何一個基因的作用都要受到同一細胞中其他基因的影響。除了人們正在研究的少數基因以外,其餘的全部基因構成所謂的背景基因型或稱殘余基因型。

等位基因的相互作用 1932年H.J.馬勒依據突變型基因與野生型等位基因的關系歸納為無效基因、亞效基因、超效基因、新效基因和反效基因。

①無效基因。不能產生野生型表型的、完全失去活性的突變型基因。一般的無效基因卻能通過回復突變而成為野生型基因。

②亞效基因。表型效應在性質上相同於野生型,可是在程度上次於野生型的突變型基因。

③超效基因。表型效應超過野生型等位基因的突變型基因。

④新效基因。產生野生型等位基因所沒有的新性狀的突變型基因。

⑤反效基因。作用和野生型等位基因相對抗的突變型基因。

⑥鑲嵌顯性。對於某一性狀來講,一個等位基因影響身體的一個部分,另一等位基因則影響身體的另一部分,而在雜合體中兩個部分都受到影響的現象稱為鑲嵌顯性。

基因和環境因素的相互作用 基因作用的表現離不開內在的和外在的環境的影響。在具有特定基因的一群個體中,表現該基因性狀的個體的百分數稱為外顯率;在具有特定基因而又表現該一性狀的個體中,對於該一性狀的表現程度稱為表現度。外顯率和表現度都受內在環境和外在環境的影響。

內在環境 指生物的性別、年齡等條件以及背景基因型。

①性別。性別對於基因作用的影響實際上是性激素對基因作用的影響。性激素為基因所控制,所以實質上這些都是基因相互作用的結果。

②年齡。人類中各個基因顯示它的表型的年齡有很大的區別。

③背景基因型。通過選擇,可以改變動植物品系的某一遺傳性狀的外顯率和表現度,說明一些基因的作用往往受到一系列修飾基因或者背景基因型的影響。

由於背景基因型的差異而造成的影響,在下述3種情況中可以減低到最低限度:由高度近交得來的純系;一卵雙生兒;無性繁殖系(包括某些高等植物的無性繁殖系、微生物的無性繁殖系以及高等動物的細胞株)。用這些體系作為實驗系統,可以更為明確地顯示環境因素的影響,更為確切地說明某一基因的作用。雙生兒法在人類遺傳學中的應用及純系生物在遺傳學和許多生物學研究中的應用都是根據這一原理。

外在環境 ①溫度。溫度敏感突變型只能在某些溫度中表現出突變型的性狀,對於一般的突變型來說,溫度對於基因的作用也有程度不等的影響。②營養。家兔脂肪的黃色決定於基因y的純合狀態以及食物中的葉黃素的存在。如果食物中不含有葉黃素,那麼yy純合體的脂肪也並不呈黃色。y基因的作用顯然和葉黃素的同化有關。

演化 就細胞中DNA的含量來看,一般愈是低等的生物含量愈低,愈是高等的生物含量愈高。就基因的數量和種類來講,一般愈是低等的生物愈少,愈是高等的生物愈多。DNA含量和基因數的增加與生理功能的逐漸完備是密切相關的。

基因最初是一個抽象的符號,後來證實它是在染色體上佔有一定位置的遺傳的功能單位。大腸桿菌乳糖操縱子中的基因的分離和離體條件下轉錄的實現進一步說明基因是實體。今已可以在試管中對基因進行改造(見重組DNA技術)甚至人工合成基因。對基因的結構、功能、重組、突變以及基因表達的調控和相互作用的研究始終是遺傳學研究的中心課題。

【基本特性】

基因具有3種特性:①穩定性。基因的分子結構穩定,不容易發生改變。基因的穩定性來源於基因的精確自我復制,並隨細胞分裂而分配給子細胞,或通過性細胞傳給子代,從而保證了遺傳的穩定。②決定性狀發育。基因攜帶的特定遺傳信息轉錄給信使核糖核酸(mRNA),在核糖體上翻譯成多肽鏈,多肽鏈折疊成特定的蛋白質。其中有的是結構蛋白,更多的是酶。基因正是通過對酶合成的控制,以控制生物體的每一個生化過程,從而控制性狀的發育。③可變性。基因可以由於細胞內外誘變因素的影響而發生突變。突變的結果產生了等位基因和復等位基因。由於基因的這種可變性,才得以認識基因的存在,並增加了生物的多樣性,為選擇提供更多的機會。

【基因變異】

基因變異是指基因組DNA分子發生的突然的可遺傳的變異。從分子水平上看,基因變異是指基因在結構上發生鹼基對組成或排列順序的改變。基因雖然十分穩定,能在細胞分裂時精確地復制自己,但這種隱定性是相對的。在一定的條件下基因也可以從原來的存在形式突然改變成另一種新的存在形式,就是在一個位點上,突然出現了一個新基因,代替了原有基因,這個基因叫做變異基因。於是後代的表現中也就突然地出現祖先從未有的新性狀。例如英國女王維多利亞家族在她以前沒有發現過血友病的病人,但是她的一個兒子患了血友病,成了她家族中第一個患血友病的成員。後來,又在她的外孫中出現了幾個血友病病人。很顯然,在她的父親或母親中產生了一個血友病基因的突變。這個突變基因傳給了她,而她是雜合子,所以表現型仍是正常的,但卻通過她傳給了她的兒子。基因變異的後果除如上所述形成致病基因引起遺傳病外,還可造成死胎、自然流產和出生後天折等,稱為致死性突變;當然也可能對人體並無影響,僅僅造成正常人體間的遺傳學差異;甚至可能給個體的生存帶來一定的好處。

【基因破譯】

目前,由多國科學家參與的「人類基因組計劃」,正力圖在21世紀初繪制出完整的人類染色體排列圖。眾所周知,染色體是DNA的載體,基因是DNA上有遺傳效應的片段,構成DNA的基本單位是四種鹼基。由於每個人擁有30億對鹼基,破譯所有DNA的鹼基排列順序無疑是一項巨型工程。與傳統基因序列測定技術相比,基因晶元破譯人類基因組和檢測基因突變的速度要快數千倍。

基因晶元的檢測速度之所以這么快,主要是因為基因晶元上有成千上萬個微凝膠,可進行並行檢測;同時,由於微凝膠是三維立體的,它相當於提供了一個三維檢測平台,能固定住蛋白質和DNA並進行分析。

美國正在對基因晶元進行研究,已開發出能快速解讀基因密碼的「基因晶元」,使解讀人類基因的速度比目前高1000倍。

【基因診斷】

通過使用基因晶元分析人類基因組,可找出致病的遺傳基因。癌症、糖尿病等,都是遺傳基因缺陷引起的疾病。醫學和生物學研究人員將能在數秒鍾內鑒定出最終會導致癌症等的突變基因。藉助一小滴測試液,醫生們能預測葯物對病人的功效,可診斷出葯物在治療過程中的不良反應,還能當場鑒別出病人受到了何種細菌、病毒或其他微生物的感染。利用基因晶元分析遺傳基因,將使10年後對糖尿病的確診率達到50%以上。

未來人們在體檢時,由搭載基因晶元的診斷機器人對受檢者取血,轉瞬間體檢結果便可以顯示在計算機屏幕上。利用基因診斷,醫療將從千篇一律的「大眾醫療」的時代,進步到依據個人遺傳基因而異的「定製醫療」的時代。

【基因環保】

基因晶元在環保方面也大有可為。基因晶元可高效地探測到由微生物或有機物引起的污染,還能幫助研究人員找到並合成具有解毒和消化污染物功能的天然酶基因。這種對環境友好的基因一旦被發現,研究人員將把它們轉入普通的細菌中,然後用這種轉基因細菌清理被污染的河流或土壤。

【基因武器】

基因武器(genetic weapon),也稱遺傳工程武器或DNA武器。它運用先進的遺傳工程這一新技術,用類似工程設計的辦法,按人們的需要通過基因重組,在一些致病細菌或病毒中接入能對抗普通疫苗或葯物的基因,或者在一些本來不會致病的微生物體內接入致病基因而製造成生物武器。它能改變非致病微生物的遺傳物質,使其產生具有顯著抗葯性的致病菌,利用人種生化特徵上的差異,使這種致病菌只對特定遺傳特徵的人們產生致病作用,從而有選擇地消滅敵方有生力量。

【基因計算】

DNA分子類似「計算機磁碟」,擁有信息的保存、復制、改寫等功能。將螺旋狀的DNA的分子拉直,其長度將超過人的身高,但若把它折疊起來,又可以縮小為直徑只有幾微米的小球。因此,DNA分子被視為超高密度、大容量的分子存儲器。

基因晶元經過改進,利用不同生物狀態表達不同的數字後還可用於製造生物計算機。基於基因晶元和基因演算法,未來的生物信息學領域,將有望出現能與當今的計算機業硬體巨頭――英特爾公司、軟體巨頭――微軟公司相匹敵的生物信息企業。

【基因影響大腦結構和智力】

加州大學洛山磯分校的大腦圖譜研究人員首次創造出顯示個體基因如何影響他們的大腦結構和智力水平的圖像。這項發現發表於2001年11月5日的《自然神經科學》(Nature Neuroscience)雜志上,為父母如何向後代傳遞個性特徵和認知能力以及大腦疾病如何影響整個家族提供了令人興奮的新見解。

研究小組發現大腦前沿部分灰質的數量是由個體父母的遺傳組成決定的,根據智力測驗的分數的衡量,它與個體的認知能力有著極大的關聯。

更為重要的是,這些是第一批揭開正常的遺傳差異是如何影響大腦結構和智力的圖像。

大腦控制語言和閱讀技巧的區域在同卵雙生的雙胞胎中本質上是一樣的,因為他們享有完全一樣的基因,而普通的兄弟姐妹只顯示60%的正常的大腦差異。

家庭成員大腦中的這種緊密的結構相似性有助於解釋大腦疾病包括精神分裂症和一些類型的痴呆症等為什麼會在家庭中蔓延。

家庭成員的大腦語言區也同樣極其相似。家庭成員最為相似的大腦區域可能特別易受家族遺傳病攻擊,包括各種形式的精神分裂症和痴呆症等在內。

科學家使用核磁共振成像技術來掃描一組20對基因完全相同的同卵雙生的雙胞胎,和20對一半基因相同的異卵雙生的同性雙胞胎。

通過高速的超型計算機,他們創造出用不同色彩做標記的圖像,圖像可以顯示大腦的哪些部位是由我們的遺傳組成決定的,哪些部位更易受環境因素如學習和壓力等的影響。

為繪制出遺傳對大腦影響的圖譜,加州大學洛山磯分校的科學家們與芬蘭國家公共衛生研究院和芬蘭赫爾辛基大學合作,在一項國家計劃中 ,芬蘭研究人員跟蹤了芬蘭從1940到1957年間所有的同性雙胞胎--共9500對,他們中有許多接受了大腦掃描和認知能力測試。

通過分析78個不同的遺傳標記,他們的遺傳相似性被進一步證實。這些個體的DNA在同卵雙生的雙胞胎中完全吻合,異卵雙生的雙胞胎中一半吻合。

最近的研究令人驚訝地顯示許多認知技能是可遺傳的,遺傳對口頭表達能力和空間感、反應時期、甚至一些個性特質如對壓力的情緒反應等都有極大的影響。甚至在根據共同家庭環境對統計數據進行修正之後——通常這種共同環境趨向於使同一家庭成員更為相似——遺傳關聯依然存在。在這項研究以前,人們對個體基因型對個體大腦間廣泛變異以及個體的認知能力有多大影響知之甚少。

【基因工程(DNA重組技術)都有那些應用呢】?

一:在生產領域,人們可以利用基因技術,生產轉基因食品.例如,科學家可以把某種肉豬體內控制肉的生長的基因植入雞體內,從而讓雞也獲得快速增肥的能力.但是,轉基因因為有高科技含量, 怕吃了轉基因食品中的外源基因後會改變人的遺傳性狀,比如吃了轉基因豬肉會變得好動,喝了轉基因牛奶後易患戀乳症等等。華中農業大學的張啟發院士認為:「轉基因技術為作物改良提供了新手段,同時也帶來了潛在的風險。基因技術本身能夠進行精確的分析和評估,從而有效地規避風險。對轉基因技術的風險評估應以傳統技術為參照。科學規范的管理可為轉基因技術的利用提供安全保障。生命科學基礎知識的科普和公眾教育十分重要。」

二:軍事上的應用。生物武器已經使用了很長的時間.細菌,毒氣都令人為之色變.但是,現在傳說中的基因武器卻更加令人膽寒。

三: 環境保護上,也可以應用基因武器。我們可以針對一些破壞生態平衡的動植物,研製出專門的基因葯物,既能高效的殺死它們,又不會對其他生物造成影響,還能節省成本。例如一直危害我國淡水區域的水葫蘆,如果有一種基因產品能夠高校殺滅的話,那每年就可以節省幾十億了。
科學是一把雙刃劍,基因工程也不例外。我們要發揮基因工程中能造福人類的部分,抑止它的害處。

四,醫療方面

隨著人類對基因研究的不斷深入,發現許多疾病是由於基因結構與功能發生改變所引起的。科學家將不僅能發現有缺陷的基因,而且還能掌握如何進行對基因診斷、修復、治療和預防,這是生物技術發展的前沿。這項成果將給人類的健康和生活帶來不可估量的利益。所謂基因治療是指用基因工程的技術方法,將正常的基因轉如病患者的細胞中,以取代病變基因,從而表達所缺乏的產物,或者通過關閉或降低異常表達的基因等途徑,達到治療某些遺傳病的目的。目前,已發現的遺傳病有6500多種,其中由單基因缺陷引起的就有約3000多種。因此,遺傳病是基因治療的主要對象。 第一例基因治療是美國在1990年進行的。當時,兩個4歲和9歲的小女孩由於體內腺苷脫氨酶缺乏而患了嚴重的聯合免疫缺陷症。科學家對她們進行了基因治療並取得了成功。這一開創性的工作標志著基因治療已經從實驗研究過渡到臨床實驗。1991年,我國首例B型血友病的基因治療臨床實驗也獲得了成功

㈡ 遺傳基因可以改變嗎

基因是可以改變的 但是人為的改變很難 改變基因一般是通過物理或化學方法使基因突變 而基因突變是無法按人們意志突變的 他是無定向的 也就是說人控制不了他的突變方向 說不定往壞處變 而且你說的是性格 不完全由某種基因決定的 即使由基因的影響 也是很多基因作用的結果 這是無法改變的 但是性格 雖然有基因的元素 但是影響有限 後天的教育更重要 特別是從小教育 效果很好

㈢ 電子商務的基因是什麼

電子商務的基因融合了以下幾個方面:

1、互聯網網站基因
UI/UE,導航,流量,PV、UV、轉化率、版AD、Social Marketing;

電子商務體系權是從網站開始的,而網站需要考慮到很多網站的導航布局,以及網站的流量大小,訪問量、點擊率、轉化率等因素。正因為有這樣的互聯網用戶心理需求體系,才鑒定了電子商務的購物付費行為。

4、互聯網技術基因

大規模數據分析、大訪問量支持、系統可用性、容錯性、魯棒性;互聯網的技術支持了大規模的訪問用戶可以進行支持搶購等行為,而互聯網的大數據技術也為運營和營銷做了奠基基礎,從而更懂用戶,更好的促進營銷。

2、零售基因

選品、定價、促銷、CRM;互聯網的規模化離不開零售行業的基因,也算是傳統做生意的基因,這樣才能更懂用戶,讓用戶產生購買的慾望,同時通過CRM客戶管理從而產生多次購買。

3、供應鏈和生產運作基因

物流、倉儲、供應商管理、庫存周轉率、現金流;其實就是倉儲管理體系,也就是線下的這些體系支撐,只有這樣才能推動互聯網電子商務的發展。

㈣ 基因重組能否產生新的基因為什麼

基因重組只能產生新的基因型和表現型,不能產生新的基因,只有基因突變和染色體變異才有可能導致新的基因的產生!

㈤ 基因的本質 中最重要的什麼』

基因的本質最重要的是DNA。
脫氧核糖核酸又稱去氧核糖核酸,是一種生物大分子,可組成遺傳指令,引導生物發育與生命機能運作。
主要功能是信息儲存,可比喻為「藍圖」或「食譜」。

㈥ 投資金融類的基金

可以考慮對沖

㈦ 浙江金融學院那個專業最好

這個還來需要問嘛。凡是帶源著限定詞的金融類院校,首選就是金融專業。無論是師資力量,還是設施配置都是優先金融專業。而且浙江金融學院以前是浙江銀行學校的前身。他們丫就是培養銀行櫃台人員出身的。但是櫃台人員只是作為勞務外派人員,這就相當於員工不是跟銀行簽訂的合同,而是跟中介公司簽的合同,最終不能享受正規職員的待遇和福利。說實話,浙江金融職業學院,並不是像外面說的那麼美好。作為一個過來人,我覺得還是選擇一個其他學校吧。

㈧ 為什麼國內許多科研人才都往國外跑呢而且國人都熱衷於學金融而不是工科

首先,生物行業的許多研究進展除了對科研本身以外,短期內幾乎沒有任何實際意義。無論是什麼「某某蛋白解析,有望治癒癌症」、還是什麼「某某神經元在某種行為遞質釋放增加,有望闡明此種行為背後的神經生理機制」,這些研究基本上全是在自己的課題小圈子造成一定的影響,媒體斷章取義、望文生義(比如說去年大牛Susumu實驗室發在《science》的工作,「creating a false memory in the hippocampus」,硬是被吹成了盜夢空間的現實版),對現實生活幾乎沒有任何影響。我相信記者十年後跟進采訪一下,會由衷地感嘆一句:十年前有望,十年後怎麼還是有望?甚至只要把十年前的報道稍微改動幾個關鍵詞就能報道現在的研究進展了。同樣的十年,房地產行業、IT行業產值翻了多少?甚至在吹牛逼方面,我一個搞神經的研究生,都沒有一個熟讀《未解之謎》、看過幾期格力傳奇故事的人在這方面吹的好,吹的有意思。就理科而言,凝聚態物理托起了整個半導體行業,而半導體行業又是如今這個時代工業的基石之一。學物理出生的人雖然轉行也不易,但努力轉行做EE,做半導體,做材料,甚至IT和金融都有用武之地。即使做學術,凝聚態研究比起生物研究來說,也更容易轉化去工業。至少石墨烯、拓撲絕緣體等研究,明面上都是為了開拓新的半導體材料。而化學托起了化工產業,這也是工業必不可少的基石,所以也可以吸納不少人。但生物相關的工業,發展就不那麼順利了。高中書上常常會吹的基因工程、生物合成之類的東西,實際上的應用並不廣泛。本來受限於生物的研究水平,基因工程的成功率並沒有書上所述的那麼高,很多產品通過生物合成的成本也難以與傳統合成手段相競爭。更甚者諸如轉基因食品,還常常受到輿論甚至宗教的強烈壓制(聽德國的一個PhD說,德國禁止基因工程方面的研究),其實發展得很艱難。而生物工業主要集中於2方面,制葯和儀器製造。

㈨ 如何自學金融

掌握的基本知識:金融市場和貨幣政策;財務會計;;公司財務;證券定價.效用理論,股票定價;證券市場.各種金融產品的類別,交易機制;國際金融.外匯市場各種金融產品/外匯市場機制/BOP項目/各種匯率制度/匯率調整機制.推薦一本書——斯蒂格里茨的;企業戰略.公司戰略決策。

金融,自學,比較適合中小企業家,因為他們學了,就可以用於現實中當中。 學了,要有地方用,才能明白透徹。一般人學了。很難得到實踐的機會。別人也不敢用你。就會有一些人。走上鑽法律漏洞這條路。一個普通人,只能從民間金融機構入手,先從個人融資和企業的簡單融資開始。

一般來說,金融工具的數量、種類、先進程度,以及金融機構的數量、種類、效率等的綜合,形成不同發展程度的金融結構。按照西方經濟學家戈德史密斯的解釋,一個社會的金融體系是由眾多的金融工具、金融機構組成的。不同類型的金融工具與金融機構組合,構成不同特徵的金融結構。

(9)基因金融學擴展閱讀:

金融 指貨幣的發行、流通和回籠,貸款的發放和收回,存款的存入和提取,匯兌的往來等經濟活動。

金融(FINANCE)就是對現有資源進行重新整合之後,實現價值和利潤的等效流通。(專業的說法是:實行從儲蓄到投資的過程,狹義的可以理解為金融是動態的貨幣經濟學。)

金融是人們在不確定環境中進行資源跨期的最優配置決策的行為。

參考資來源:網路 金融

㈩ 金融學到底是什麼樣的學問

比較國內和國外對經濟學科內的領域設置,需要特別澄清什麼是金融學的問題。我發現國內和國外對金融學(finance)這一領域的理解有很大的不同。一個國內學生說他是學金融的,到了國外會發現他學的在那裡不被稱為金融。相反,在國外是學的金融,在國內又可能不叫金融。為什麼會這樣呢?這需要仔細地分析。

首先,國內所說的金融是指兩部分內容。第一部分指的是貨幣銀行學(money and banking)。它在計劃經濟時期就有,是當時的金融學的主要內容。人民銀行說我們是搞金融的,意思是搞貨幣銀行。第二部分指的是國際金融(international finance),研究的是國際收支、匯率等問題。改革開放後,凡是以「國際」打頭的專業招生分數都非常高的,更不要說加上金融二學了。這兩部分合起來是國內所指的金融。為了避免混亂,我們且稱之為「宏觀金融」。有趣的是,這兩部分在國外都不叫做finance(金融)。而國外稱為finance的包括以下兩部分內容。第一部分是corporate finance,即公司金融。在計劃經濟下它被稱為公司財務。一說公司財務,人們就會把它跟會計聯在一起,似乎只是做做表格。之所以應把corporate finance譯成公司金融而不譯成公司財務,就是因為它的實際內容遠遠超出財務,還包括兩方面。一是公司融資,包括股權/債權結構、收購合並等,這在計劃經濟下是沒有的;二是公司治理問題,如組織結構和激勵機制等問題。第二部分是資產定價(asset pricing),它是對證券市場里不同金融工具和其衍生物價格的研究。這兩部分台起來是國外所指finance,即金融。為了避免混亂,我們且稱之為「微觀金融」

根據這一分析,我們便清楚了。國內學生說自己是金融專業的,他們指的是宏觀金融,但是按國外的說法,這一部分不叫finance(金融),而是屬於宏觀經濟學、貨幣經濟學和國際經濟學這些領域。國外說的finance(金融),一定指的是微觀金融。在美國,貨幣銀行和國際金融通常設在經濟系,而公司金融和資產定價通常設在管理(商)學院。經濟系也會有一些研究公司金融的教授,因為這一領域與微觀經濟學,特別是產權和激勵理論,有密切關系。事實上,很多研究公司金融的教授都是經濟系畢業的。北京五道口人民銀行研究生部的學生,按照國內的說法當然是學金融的。但是在美國,他們學的就不叫金融了。可見在金融這一領域,國內和國外的理解存在很大差別。

閱讀全文

與基因金融學相關的資料

熱點內容
中天高科國際貿易 瀏覽:896
都勻經濟開發區2018 瀏覽:391
輝縣農村信用社招聘 瀏覽:187
鶴壁市靈山文化產業園 瀏覽:753
國際金融和國際金融研究 瀏覽:91
烏魯木齊有農村信用社 瀏覽:897
重慶農村商業銀行ipo保薦機構 瀏覽:628
昆明市十一五中葯材種植產業發展規劃 瀏覽:748
博瑞盛和苑經濟適用房 瀏覽:708
即墨箱包貿易公司 瀏覽:720
江蘇市人均gdp排名2015 瀏覽:279
市場用經濟學一覽 瀏覽:826
中山2017年第一季度gdp 瀏覽:59
中國金融證券有限公司怎麼樣 瀏覽:814
國內金融機構的現狀 瀏覽:255
西方經濟學自考論述題 瀏覽:772
汽車行業產業鏈發展史 瀏覽:488
創新文化產業發展理念 瀏覽:822
國際貿易開題報告英文參考文獻 瀏覽:757
如何理解管理經濟學 瀏覽:22