❶ 计量经济学中Homoskedasticity与Heteroskedasticity
一、异方差性(Heteroskedasticity):给定解释变量,误差项的方差不为常数。
1.异方差性是计量经济学术语。指回归模型中扰动项的方差不全相等。
2.假设线性回归模型 中,扰动项 ε 的分量 是均值为零,彼此独立的,但 不全相等,在这种情况下。OLS 估计虽然具有无偏性和一致性,却不是最优线性无偏估计。因此在预测时 波动较大。为此,在应用 OLS 方法之前要对模型的异方差性进行检验,并设法消除异方差性。
二、同方差性(Homoskedasticity):回归模型中的误差在解释变量条件下具有不变的方差。
1.同方差性是经典线性回归的重要假定之一,指总体回归函数中的随机误差项(干扰项)在解释变量条件下具有不变的方差。
2.计量经济学中,一组随机变量具备同方差即指线性回归的最小二乘法(OLS, Ordinary Least Squares)的残值服从均值为0,方差为σ^2的正态分布,即其干扰项必须服从随机分布。与之相对应的异方差性则说明干扰项不满足此均值为0,方差为σ^2的正态分布。
(1)计量经济学扩展阅读
计量经济学
1.计量经济学是以一定的经济理论和统计资料为基础,运用数学、统计学方法与电脑技术,以建立经济计量模型为主要手段,定量分析研究具有随机性特性的经济变量关系的一门经济学学科。
2.主要内容包括理论计量经济学和应用经济计量学。理论经济计量学主要研究如何运用、改造和发展数理统计的方法,使之成为经济关系测定的特殊方法。
3.应用计量经济学是在一定的经济理论的指导下,以反映事实的统计数据为依据,用经济计量方法研究经济数学模型的实用化或探索实证经济规律。
参考资料来源:网络-异方差性
参考资料来源:网络-同方差性
参考资料来源:网络-计量经济学
❷ 什么是计量经济学计量经济学方法与
那经济学的方法呢?一定要根据一个数量变量的变化
❸ 计量经济学 有什么分析方法
1、最小二乘法
这是最简单的线性回归模型,只要有一个参数、一个误差项就好了。但是它存在很多弊病,比如无法消除内生性(endogeneity)问题,因而经济学界很少直接用它。如果要直接用最小二乘法,需要满足几大假设,条件非常苛刻。
2、工具变量法
工具变量法是现今经济学界很流行的一种计量方法,它采用一种和自变量X无关的外生变量Z来作为一种“工具”,从而解决了内生性的问题。
3、双重差分法
双重差分法用时间和实验、对照组两个维度的变量,进行双重差分,这种方法分析非常有效,不过数据收集量大,对数据质量要求高。
(3)计量经济学扩展阅读:
计量经济学的学习方法:
1、研究对象发生了较大变化
即从研究确定性问题转向非确定性问题,其对象的性质和意义将发生巨大的变化。因此,在方法的思路上、方法的性质上和方法的结果上,都将出现全新的变化。
2、研究方法发生根本变化
计量经济学方法的基础是概率论和数理统计,是一种新的数学形式。学习中要十分注意其基本概念和方法思路的理解和把握,要充分认识其方法与其它数学方法的根本不同之处。
3、研究的结果发生了变化
理论计量经济学和应用计量经济学 理论计量经济学(Theoretical Econometrics)以介绍、研究计量经济学的理论与方法为主要内容,侧重于理论与方法的数学证明与推导,与数理统计联系极为密切。
理论计量经济学除了介绍计量经济学模型的数学理论基础和普遍应用的计量经济学模型的参数估计方法与检验方法外,还研究特殊模型的估计方法与检验模型。
参考资料来源:网络—计量经济学
❹ 计量经济学 要先学什么课程呢 要有经济学的基础吗
计量经济学先导课程包括理论计量经济学和应用经济计量学,计量经济学是以数理经济学和数理统计学为方法论基础,对于经济问题试图对理论上的数量接近和经验(实证)上的数量接近这两者进行综合而产生的经济学分支。所以,学习计量经济学必须要有好的经济学基础。
理论经济计量学主要研究如何运用、改造和发展数理统计的方法,使之成为经济关系测定的特殊方法。应用计量经济学是在一定的经济理论的指导下,以反映事实的统计数据为依据,用经济计量方法研究经济数学模型的实用化或探索实证经济规律。
计量经济学的基础是一整套建立在数理统计理论上的计量方法,属于计量经济学的“硬件”,计量经济学的主要用途或目的主要有两个方面:
1、理论检验。这是计量经济学用途最为主要的和可靠的方面。这也是计量经济学本身的一个主要内容。
2、预测应用。从理论研究和方法的最终目的看,预测(包括政策评价)当然是计量经济学最终任务,必须注意学习和了解,但其预测的可靠性或有效性是我们应十分注意的。
(4)计量经济学扩展阅读:
与一般的数学方法相比,计量经济学方法有十分重要的特点和意义:
研究对象发生了较大变化。即从研究确定性问题转向非确定性问题,其对象的性质和意义将发生巨大的变化。因此,在方法的思路上、方法的性质上和方法的结果上,都将出现全新的变化。
研究方法发生根本变化。计量经济学方法的基础是概率论和数理统计,是一种新的数学形式。学习中要十分注意其基本概念和方法思路的理解和把握,要充分认识其方法与其它数学方法的根本不同之处。
计量经济学模型的结论是概率意义上的,也可以说是不太确定的。但真正要理解其不确定性的含义,并不那么简单,学习中需要始终关注这一点。理论计量经济学和应用计量经济学 理论计量经济学以介绍、研究计量经济学的理论与方法为主要内容。
侧重于理论与方法的数学证明与推导,与数理统计联系极为密切。理论计量经济学除了介绍计量经济学模型的数学理论基础和普遍应用的计量经济学模型的参数估计方法与检验方法外,还研究特殊模型的估计方法与检验模型。
❺ 计量经济学题目
1.计量经济学模型:揭示经济现象中客观存在的因果关系,主要采用回归分析方法的经济数学模型。
2.参数估计的无偏性:它的均值或期望值是否等于总体的真实值。
3.参数估计量的有效性:它是否在所有线性无偏估计量中具有最小方差。 估计量的期望方差越大说明用其估计值代表相应真值的有效性越差;否则越好,越有效。不同的估计量具有不同的方差,方差最小说明最有效。
4.序列相关:即模型的随即干扰项违背了相互独立的基本假设。
5.工具变量:在模型估计过程中被作为工具使用,以替代与随即干扰项相关的随机解释变量。
6.结构式模型:根据经济理论和行为规律建立的描述经济变量之间直接关系结构的计量经济学方程系统。
7.内生变量:具有某种概率分布的随机变量,它的参数是联立方程系统估计的元素,内生变量是由模型系统决定的,同时也对模型系统产生影响。内生变量一般都是经济变量。
8.异方差:对于不同的样本点,随机干扰项的方差不再是常数,而是互不相同,则认为出现了异方差性。
9. 回归分析 :研究一个变量关于另一个(些)变量的依赖关系的计算方法和理论 。其目的在于通过后者的已知或设定值,去估计和预测前者的(总体)均值。前一变量称为被解释变量或应变量,后一变量称为解释变量或自变量。
❻ 计量经济学
计量来经济学是以一定源的经济理论和统计资料为基础,运用数学、统计学方法与电脑技术,以建立经济计量模型为主要手段,定量分析研究具有随机性特性的经济变量关系的一门经济学学科。主要内容包括理论计量经济学和应用经济计量学。
❼ 计量经济学的概念
计量经济学的概念就是一种相关的经济学的一种计量统计的一个概念,所以说这个病不用纠结太多,这个概念问题
❽ 计量经济学
以一定的经济理论和统计资料为基础,运用数学、统计学方法与电脑技术,以建立经济计量模型为主要手段,定量分析研究具有随机性特性的经济变量关系。 主要内容包括理论计量经济学和应用经济计量学。
❾ 怎么学好计量经济学
计量是被包含与统计学之中的一门学科,它以数学为基础(包括概率与求导一类,这两门是重中之重 一定要打下坚实的基础)应用于各个领域。在搭好基础的前提下,你才有可能继续学习计量经济学下面的分支。计量经济学的分支有很多,应用计量、金融计量、微观计量、宏观计量、时序分析、贝叶斯计量以及计量经济学原理等等等等一系列东西,很多方向之间是有共性的。
当你打好基础往下学习的情况下,可能会碰到某一个方向比较难理解,比如你学金融计量的时候会发现可能你不知道什么是Order of Integrating 一本书或者一个方向通常不可能面面俱到 这时候你可以多查查文献。
计量经济的学习理解程度我觉得对我来说就像一个一个开口向下的二次函数,一开始是很感兴趣的但是很多东西理解的不好。后来学的内容越来越多了发现很多东西是想通的,发现其实不是难,而是你有很多东西不知道。了解多了自然对后续学习有帮助了。比如说应用计量,时间序列加上计量经济学原理的学习就对金融计量的学习很有帮助,金融计量的学习又对应用计量很有帮助,他们是相辅相成的。但是parametric model玩儿多了你就想玩儿高端的,比如贝叶斯计量和金融计量后期,包括 semi 或者 non parametric 这时候难度又上来了,因为他对你的抽象思维和数学能力又有很大的要求,所以又开始比较痛苦。