导航:首页 > 经济学法 > 计量经济学eviews论文

计量经济学eviews论文

发布时间:2020-11-25 10:07:25

① 计量经济学论文 用Eviews对数据分析

论文一般由题名、作者、摘要、关键词、正文、参考文献和附录等部分组成,其中部分组成(例如附录)可有可无。论文各组成的排序为:题名、作者、摘要、关键词、英文题名、英文摘要、英文关键词、正文、参考文献和附录和致谢。
下面按论文的结构顺序依次叙述。
题目
(一)论文——题目科学论文都有题目,不能“无题”。论文题目一般20字左右。题目大小应与内容符合,尽量不设副题,不用第1报、第2报之类。论文题目都用直叙口气,不用惊叹号或问号,也不能将科学论文题目写成广告语或新闻报道用语。
署名
(二)论文——署名科学论文应该署真名和真实的工作单位。主要体现责任、成果归属并便于后人追踪研究。严格意义上的论文作者是指对选题、论证、查阅文献、方案设计、建立方法、实验操作、整理资料、归纳总结、撰写成文等全过程负责的人,应该是能解答论文的有关问题者。往往把参加工作的人全部列上,那就应该以贡献大小依次排列。论文署名应征得本人同意。学术指导人根据实际情况既可以列为论文作者,也可以一般致谢。行政领导人一般不署名。
引言
(三)论文——引言是论文引人入胜之言,很重要,要写好。一段好的论文引言常能使读者明白你这份工作的发展历程和在这一研究方向中的位置。要写出论文立题依据、基础、背景、研究目的。要复习必要的文献、写明问题的发展。文字要简练。
材料方法
(四)论文——材料和方法按规定如实写出实验对象、器材、动物和试剂及其规格,写出实验方法、指标、判断标准等,写出实验设计、分组、统计方法等。这些按杂志对论文投稿规定办即可。
实验结果
(五)论文——实验结果应高度归纳,精心分析,合乎逻辑地铺述。应该去粗取精,去伪存真,但不能因不符合自己的意图而主观取舍,更不能弄虚作假。只有在技术不熟练或仪器不稳定时期所得的数据、在技术故障或操作错误时所得的数据、不符合实验条件时所得的数据才能废弃不用。而且必须在发现问题当时就在原始记录上注明原因,不能在总结处理时因不合常态而任意剔除。废弃这类数据时应将在同样条件下、同一时期的实验数据一并废弃,不能只废弃不合己意者。
实验结果的整理应紧扣主题,删繁就简,有些数据不一定适合于这一篇论文,可留作它用,不要硬行拼凑到一篇论文中。论文行文应尽量采用专业术语。能用表的不要用图,可以不用图表的最好不要用图表,以免多占篇幅,增加排版困难。文、表、图互不重复。实验中的偶然现象和意外变故等特殊情况应作必要的交代,不要随意丢弃。
讨论
(六)论文——讨论是论文中比较重要,也是比较难写的一部分。应统观全局,抓住主要的有争议问题,从感性认识提高到理性认识进行论说。要对实验结果作出分析、推理,而不要重复叙述实验结果。应着重对国内外相关文献中的结果与观点作出讨论,表明自己的观点,尤其不应回避相对立的观点。论文的讨论中可以提出假设,提出本题的发展设想,但分寸应该恰当,不能写成“科幻”或“畅想”。
结论
(七)论文——结语或结论论文的结语应写出明确可靠的结果,写出确凿的结论。论文的文字应简洁,可逐条写出。不要用“小结”之类含糊其辞的词。
参考文献
(八)论文——参考义献这是论文中很重要、也是存在问题较多的一部分。列出论文参考文献的目的是让读者了解论文研究命题的来龙去脉,便于查找,同时也是尊重前人劳动,对自己的工作有准确的定位。因此这里既有技术问题,也有科学道德问题。
一篇论文中几乎自始至终都有需要引用参考文献之处。如论文引言中应引上对本题最重要、最直接有关的文献;在方法中应引上所采用或借鉴的方法;在结果中有时要引上与文献对比的资料;在讨论中更应引上与论文有关的各种支持的或有矛盾的结果或观点等。

② 求计量经济学论文,要用EViews多元线性回归,急求急求

1、论点(证明什么)论点应该是作者看法的完整表述,在形式上是个完整的简洁明确的句子。从全文看,它必能统摄全文。表述形式往往是个表示肯定或否定的判断句,是明确的表态性的句子。A.把握文章的论点。中心论点只有一个(统率分论点)⑴明确:分论点可以有N个(补充和证明中心论点)⑵方法①从位置上找:如标题、开篇、中间、结尾。②分析文章的论据。(可用于检验预想的论点是否恰当)③摘录法(只有分论点,而无中心论点)B.分析论点是怎样提出的:①摆事实讲道理后归结论点;②开门见山,提出中心论点;③针对生活中存在的现象,提出论题,通过分析论述,归结出中心论点;④叙述作者的一段经历后,归结出中心论点;⑤作者从故事中提出问题,然后一步步分析推论,最后得出结论,提出中心论点。2、论据(用什么证明)⑴论据的类型:①事实论据(举例后要总结,概述论据要紧扣论点);②道理论据(引用名言要分析)。⑵论据要真实、可靠,典型(学科、国别、古今等)。⑶次序安排(照应论点);⑷判断论据能否证明论点;⑸补充论据(要能证明论点)。3、论证(怎样证明)⑴论证方法(须为四个字)①举例论证(例证法)事实论据记叙②道理论证(引证法和说理)道理论据议论③对比论证(其本身也可以是举例论证和道理论证)④比喻论证比喻在说明文中为打比方,散文中为比喻。⑵分析论证过程:①论点是怎样提出的;②论点是怎样被证明的(用了哪些道理和事实,是否有正反两面的分析说理);③联系全文的结构,是否有总结。⑶论证的完整性(答:使论证更加全面完整,避免产生误解)⑷分析论证的作用:证明该段的论点。4、议论文的结构⑴一般形式:①引论(提出问题)―――②本论(分析问题)―――③结论(解决问题)。⑵类型:①并列式②总分总式③总分式④分总式⑤递进式。6、驳论文的阅读⑴作者要批驳的错误观点是什么?⑵作者是怎样进行批驳的,用了哪些道理和论据;⑶由此,作者树立的正确的观点是什么?7、常见考点①、议论文的论点考点:第一,分清所议论的问题及针对这个问题作者所持的看法(即分清论题和论点)。第二,注意论点在文中的位置:(1)在文章的开头,这就是所谓开宗明义、开门见山的写法。(2)在文章结尾,就是所谓归纳全文,篇末点题,揭示中心的写法。这种写法在明确表达论点时大多有。所以,总之,因此,总而言之,归根结底等总结性的词语。第三、分清中心论点和分论点:分论一般位于段首或有标志性词语:首先、其次、第三等第四、要注意论点的表述形式:有时题目就是中心论点。一篇议论文只有一个中心论点。第五、通过论据来反推论点:论据是为证明论点服务的,分析论据可以看出它证明什么,肯定什么,支持什么,这就是论点。②、议论文的论据考点:论据是论点立足的根据,一般全为事实论据和道理论据。1、用事实作论据。事例必须真实可靠,有典型意义,能揭示事物本质并与论点有一定的逻辑联系。议论文中,对所举事例的叙述要简明扼要,突出与论点有直接关系的部分。明确论据时,不仅要知道文中哪些地方用了事实论据,还要会概括事实论据。概括时,要做到准确,必须依据论点将论据本质特点把握住,然后用确切的语言进行表述。2、用作论据的言论,应有一定的权威性,直接引用时要原文照录,以真核对,不能断章取义;间接引用时不能曲解原意。③、议论文的结构、层次考点:结构有:并列式结构、对照式结构、层进式结构、总分式结构。此考点的基本形式:作者如何证明论点的?

③ 求计量经济学模型论文 要有eviews的工作文件w

你在网上找些(建模与仿真),看看有没有符合你的需求的东西吧~~~

④ 求一篇计量经济学的论文,最好用到EVIEWS软件分析的,很急!希望大家帮帮忙!

一元线性回归模型的置信区间与预测 多元线性回归模型的置信区间问题包括参数估计量的置信区间和被解释变量预测值的置信区间两个方面,在数理统计学中属于区间估计问题。所谓区间估计是研究用未知参数的点估计值(从一组样本观测值算得的)作为近似值的精确程度和误差范围,是一个必须回答的重要问题。 一、参数估计量的置信区间 在前面的课程中,我们已经知道,线性回归模型的参数估计量 是随机变量 的函数,即: ,所以它也是随机变量。在多次重复抽样中,每次的样本观测值不可能完全相同,所以得到的点估计值也不可能相同。现在我们用参数估计量的一个点估计值近似代表参数值,那么,二者的接近程度如何?以多大的概率达到该接近程度?这就要构造参数的一个区间,以点估计值为中心的一个区间(称为置信区间),该区间以一定的概率(称为置信水平)包含该参数。即回答 以何种置信水平位于 之中,以及如何求得a。 在变量的显著性检验中已经知道 (2.5.1) 这就是说,如果给定置信水平 ,从t分布表中查得自由度为(n-k-1)的临界值 ,那么t值处在 的概率是 。表示为 即 于是得到:在( )的置信水平下 的置信区间是 i=0,1 (2.5.3) 在某例子中,如果给定 ,查表得 从回归计算中得到 根据(2.5.2)计算得到 的置信区间分别为 和(0.1799,0.2401) 显然,参数 的置信区间要小。 在实际应用中,我们当然希望置信水平越高越好,置信区间越小越好。如何才能缩小置信区间?从(2.5.3)式中不难看出:(1)增大样本容量n。在同样的置信水平下,n越大,从t分布表中查得自由度为(n-k-1)的临界值 越小;同时,增大样本容量,在一般情况下可使估计值的标准差 减小,因为式中分母的增大是肯定的,分子并不一定增大。(2)更主要的是提高模型的拟合度,以减小残差平方和 。设想一种极端情况,如果模型完全拟合样本观测值,残差平方和为0,则置信区间也为0。(3)提高样本观测值的分散度。在一般情况下,样本观测值越分散,标准差越小。置信水平与置信区间是矛盾的。置信水平越高,在其他情况不变时,临界值 越大,置信区间越大。如果要求缩小置信区间,在其他情况不变时,就必须降低对置信水平的要求。 二、预测值的置信区间 1、 点预测 计量经济学模型的一个重要应用是经济预测。对于模型 , 如果给定样本以外的解释变量的观测值 ,有 因 是前述样本点以外的解释变量值,所以 和 是不相关的。引用已有的OLS的估计值,可以得到被解释变量 的点预测值: (2.5.4) 但是,严格地说,这只是被解释变量的预测值的估计值,而不是预测值。原因在于两方面:一是模型中的参数估计量是不确定的,正如上面所说的;二是随机项的影响。所以,我们得到的仅是预测值的一个估计值,预测值仅以某一个置信水平处于以该估计值为中心的一个区间中。于是,又是一个区间估计问题。 2、 区间预测 如果已经知道实际的预测值 ,那么预测误差为 显然, 是一随机变量,可以证明 而 因为 由原样本的OLS估计值求得,而 与原样本不相关,故有: , 可以计算出来: (2.5.5) (2.5.6) 因和 均服从正态分布,可利用它们的性质构造统计量,求区间预测值。利用 构造统计量为: 将 用估计值 代入上式,有 这样,可得显著性水平 下 的置信区间为 (2.5.7) (2.5.7)式称为 的均值区间预测。 同理,利用 构造统计量,有 将 用估计值 代入上式,有: 根据置信区间的原理,得显著性水平 下 的置信区间: (2.5.8) 上式称为 的个值区间预测,显然,在同样的 下,个值区间要大于均值区间。(2.5.7)和(2.5.8)也可表述为: 的均值或个值落在置信区间内的概率为 , 即为预测区间的置信度。或者说,当给定解释变量值 后,只能得到被解释变量 或其均值 以 的置信水平处于某区间的结论。 经常听到这样的说法,“如果给定解释变量值,根据模型就可以得到被解释变量的预测值为……值”。这种说法是不科学的,也是计量经济学模型无法达到的。如果一定要给出一个具体的预测值,那么它的置信水平则为0;如果一定要回答解释变量以100%的置信水平处在什么区间中,那么这个区间是∞。 在实际应用中,我们当然也希望置信水平越高越好,置信区间越小越好,以增加预测的实用意义。如何才能缩小置信区间?从(2.5.5)和(2.5.6)式中不难看出:(1)增大样本容量n。在同样的置信水平下,n越大,从t分布表中查得自由度为(n-k-1)的临界值 越小;同时,增大样本容量,在一般情况下可使 减小,因为式中分母的增大是肯定的,分子并不一定增大。(2)更主要的是提高模型的拟合优度,以减小残差平方和 。设想一种极端情况,如果模型完全拟合样本观测值,残差平方和为0,则置信区间长度也为0,预测区间就是一点。(3)提高样本观测值的分散度。在一般情况下,样本观测值越分散,作为分母的 的值越大,致使区间缩小。置信水平与置信区间是矛盾的。置信水平越高,在其他情况不变时,临界值 越大,置信区间越大。如果要求缩小置信区间,在其他情况不变时,就必须降低对置信水平的要求。 四、一元线性回归模型参数估计实例 为了帮助读者理解一元线性回归模型参数估计的原理,下面以我国国家财政文教科学卫生事业费支出模型为例,不采用计量经济学应用软件,用手工计算,进行模型的参数估计。 经分析得到,我国国家财政中用于文教科学卫生事业费的支出,主要由国家财政收入决定,二者之间具有线性关系。于是可以建立如下的模型: 其中, 为第t年国家文教科学卫生事业费支出额(亿元), 为第t年国家财政收入额(亿元), ,为随机误差项, 为待估计的参数。选取1991—1997年的数据为样本,利用(2.2.6)和(2.2.7)的计算公式,分别计算参数估计值。 表2.2.1 有关数据表 年份ED FI 1991 708 3149 -551 -2351 734 -26 -0.037 1992 793 3483 -466 -2017 804 -11 -0.014 1993 958 4349 -301 -1151 1001 -43 -0.045 1994 1278 5218 19 -282 1196 82 0.064 1995 1467 6242 208 742 1424 43 0.029 1996 1704 7408 445 1908 1685 19 0.011 1997 1904 8651 645 3151 1963 -59 -0.031 有关中间计算结果如下: 由电脑计算的参数估计值为 全部统计结果如下表。 从表中可看出,判定系数 0.99,表示以国家财政收入额来解释国家文教科学卫生事业费支出额,在1991至1997年间,拟合度相当理想。截距项 的估计值对应的t-统计量为0.47,不能通过显著性检验,即不能推翻 为0的假设;而一次系数 的估计值对应的t-统计量为20.34,不用查表即可知通过显著性检验,即 显著不为0,因果关系成立。F-统计量的值为413.58,也表示方程系数显著不为0。 表一:Eviews计算结果 Dependent Variable: ED Method: Least Squares Date: 09/21/02 Time: 16:22 Sample: 1991 1997 Included observations: 7 Variable Coefficient Std. Error t-Statistic Prob. C 30.05237 63.90691 0.470252 0.6580 FI 0.223419 0.010986 20.33659 0.0000 R-squared 0.988055 Mean dependent var 1258.857 Adjusted R-squared 0.985666 S.D. dependent var 459.8972 S.E. of regression 55.06160 Akaike info criterion 11.08974 Sum squared resid 15158.90 Schwarz criterion 11.07428 Log likelihood -36.81408 F-statistic 413.5768 Durbin-Watson stat 1.644626 Prob(F-statistic) 0.000005 表二:不含截距项的Eviews计算结果: Dependent Variable: ED Method: Least Squares Date: 09/21/02 Time: 16:19 Sample: 1991 1997 Included observations: 7 Variable Coefficient Std. Error t-Statistic Prob. FI 0.228304 0.003337 68.40877 0.0000 R-squared 0.987526 Mean dependent var 1258.857 Adjusted R-squared 0.987526 S.D. dependent var 459.8972 S.E. of regression 51.36364 Akaike info criterion 10.84730 Sum squared resid 15829.34 Schwarz criterion 10.83957 Log likelihood -36.96556 Durbin-Watson stat 1.630622 Dependent Variable: LED Method: Least Squares Date: 09/21/02 Time: 16:21 Sample: 1991 1997 Included observations: 7 Variable Coefficient Std. Error t-Statistic Prob. C -1.522329 0.383141 -3.973290 0.0106 LFI 1.005563 0.044764 22.46341 0.0000 R-squared 0.990188 Mean dependent var 7.077084 Adjusted R-squared 0.988226 S.D. dependent var 0.382958 S.E. of regression 0.041554 Akaike info criterion -3.288701 Sum squared resid 0.008634 Schwarz criterion -3.304156 Log likelihood 13.51045 F-statistic 504.6048 Durbin-Watson stat 1.930000 Prob(F-statistic) 0.000003 多元线性回归模型的参数估计实例 例2.3.1 建立中国消费模型。根据消费模型的一般形式,选择消费总额为被解释变量,国内生产总值和前一年的消费总额为解释变量,变量之间关系为简单线性关系,选取1981年至1996年统计数据为样本观测值。样本观测值列于表2.3.1中。 表2.3.1 中国消费数据表 年份 消费总额 国内生产总值 前一年消费额 年份 消费总额 国内生产总值 前一年消费额 1981 3309 4901 2976 1989 10556 16466 9360 1982 3638 5489 3309 1990 11362 1832 10556 1983 4021 6076 3638 1991 13146 21280 11362 1984 4694 7164 4021 1992 15952 25864 13146 1985 5773 8792 4694 1993 20182 34501 15952 1986 6542 10133 5773 1994 27216 47111 20182 1987 7451 11784 6542 1995 34529 59405 27216 1988 9360 14704 7451 1996 40172 68498 34529 以y代表消费总额, 代表国内生产总值, 代表前一年消费总额,应用计量经济分析软件包TSP6.5中普通最小二乘法估计模型,得到下列结果: (2.3.13) (6.83) (32.36) (5.70) 式中各项都是评价估计结果优劣的重要标准,后面将逐一介绍。这里仅讨论参数估计值。两个解释变量前的参数估计值分别为0.4809和0.1985,都为正数,且都处于0与1之间,常数项的估计值也为正,这些参数估计值的经济含义是合理的。随机误差项的方差的估计值为33739.5。 Oh,如果你是学习好的话肯定会做那么也就不用提问了,如果你学习不怎么样做出来的太好反而会让老师更加怀疑真实性,一般情况下能过关就OK了,做的太好老师问你了咋办。所以吧能过关一切都好的

求采纳

⑤ 求一篇用Eviews分析的计量经济学论文(和经济金融相关的),要分析变量之间关系的,不要预测的,多谢~~

数据你收集好了吗
我经常帮别人做这类的数据分析的

⑥ 高分求计量经济学课程论文!有数据及数据来源,运用EVIEWS对数据进行分析和处理!6000字左右!

知识经济条件下,人力资源已成为决定企业兴衰的主要因素,人力资源会计在现代企业管理中的重要地位毋庸置疑,在我国实施人力资源会计是必然的趋势。实施人力资源会计要解决的关键问题是人力资源的确认和计量。关键词:知识经济 人本论文由无忧论文网www.51lunwen.com整理提供力资源会计 确认和计量
人力资源会计这一概念的提出已经40多年了,但由于人力资源核算的复杂性,如何确认人力资源会计仍是当今会计界的难题之一。
知识经济条件下,人力资源已成为决定企业兴衰的主要因素,人力资源会计在现代企业管理中的重要地位也毋庸置疑,作为一门会计学领域的新分支,其产生和发展具有一定的科学性,它不是纯抽象的理论,应是实践性非常强的一项工作,在我国实施人力资源会计是必然的趋势。笔者在此就人力资源会计的确认和计量问题进行一些浅薄的探讨,还望各位专家批评指正。
一、进行人力资源会计核算的基础和原则
(一)在探讨人力资源会计核算之前,首先要弄清以下三个基础性问题:
1. 人力资源是企业的一项资产(随后还有阐述)。
2. 人力资源是通过负债的方式取得的。
3. 在核算人力资源的时候,既要核算其取得、开发与使用成本,又要核算其原有价值。其中取得和开发成本属于资本性支出,应将其资本化,作为资产处理;使用成本属于收益性支出,应将其费用化,计入当期损益。人力资产原有价值应作为资产的一部分进行核算,同时作为“租用人力”增加一项负债。
(二)人力资源会计核算的确认本论文由无忧论文网www.51lunwen.com整理提供原则
1. 重要性原则。人力资源是企业的重要经济资源,应重点加以体现,尤其是那些不可替代人力资源的信息、数额巨大的培训项目等。
2. 配比性原则。当人力资源数额较大,涉及多个会计期间时,应遵循配比原则对其价值进行合理摊销。
3. 历史成本原则。
将招聘、培训和开发人才等一切人力资源方面的支出均作为人力资产和成本,其数据是根据原始发生时的金额归集的。
4. 相关性原则。企业人事管理部门,它对于职工的管理不仅是看其工资发生额的大小,而且重要的是如何合理配置人力资源,所以要求人力资源会计提供的信息应体现相关性原则。
5. 效益成本原则。人力资源会计在很多方面发挥了较大的作用,但在核算时还应考虑对那些核算成本较高,对决策意义不大的核算项目可不予揭示。
6. 划分资本性支出与收益性支出原则。将递延资产中的职工培训费、费用中的职工教育经费、数额较大的培训费、招聘广告费、稀有人才离职损失费予以资本化,将工资福利费等各期发生额均衡的支出计入费用,作为收益性支出。
二、人力资源会计核算的内容和方法的确认 人力资源会计核算内容包括如下几点:
(一)人力资产的核算。人力资本论文由无忧论文网www.51lunwen.com整理提供产就是企业所拥有的人力资源的总价值,包括人力资产原有价值、人力资产取得和开发成本,以及进知识经济下人力资源会计确认和计量问题研究马雅丽 河南省三门峡市市政工程处 472000行人力资产评估时的增值部分(减值时冲减)。
1. 人力资产原有价值。在企业取得前由于劳动者已经具备一定的知识、技能而具有一定的价值。它被企业拥有后,原有价值依然存在,因此它应作为人力资产的重要组成部分。不过对其进行计量有一定难度,这可以由会计学会等权威部门研讨制定统一标准,由国家颁布实施。
2. 人力资产附带成本。企业在取得或开发人力资源时,总要发生一定的费用。如付给招聘人员薪金和津贴,招聘广告费、测验费,如教育培训人员的工资津贴、教材费及学费等。
这些都应作为人力资产附带成本,记入人力资产价值,平均分摊在劳动合同期内。
3. 人力资产评估增值(或减值)部分。人力资产价值除了受劳动者的知识技术水平影响外,还受劳动者的职位、年龄、身体健康状况及敬业程度等多种因素的影响。所以,定期对人力资产进行评估很有必要。评估增值增加人力资产价值,评估减值则冲减人力资产价值。它可由权威的人力资产评估机构,结合每个人的情况,采用科学的方法统一评估确定。
4. 租用人力的核算。企业一开始拥有人力资源,就负有合同到期时无条件地把这部分人力资源归还给劳动者的义务,从而形成负债——租用本论文由无忧论文网www.51lunwen.com整理提供人力。它在数值上应等于人力资产原有价值加上人力资产评估增值(或减去人力资产评估减值)。
5. 人力资产使用成本的核算。企业在使用人力资源时,要支付工资、福利费等,并发生其他相关支出;此外还有与各期收益相配比而摊销的资本性支出(人力资产附带成本摊销)。这些都构成了人力资产使用成本。
(二)人力资源会计账户设置的确认 为了进行人力资源会计核算,应设置以下账户:
1. “人力资产”账户。该账户根据其内容构成,下设三个明细账户:
(1)人力资产原值。本账户核算具有不同标准的劳动者在进入企业前就拥有的价值量。企业在取得人力资源时记借方,在劳动合同到期劳动者离开企业时记贷方。期末余额在借方,表示期末人力资产原值结余额。
(2)人力资产附带成本。本账户核算企业在取得或开发人力资源时所发生的必要支出。支出发生时记借方,在合同期内分期平均摊销时记贷方,直接冲减“人力资产”价值。期末余额在借方,表示尚未摊销的附带成本。
(3)人力资产评估增值。本账户核算在对人力资产进行评估时的评估增加额或减少额。评估增值时记借方,评估减值时记贷方。当劳动者离开企业时全额冲减该项人力资产的增值额。期末余额在借方,表示增值量;期末余额在贷方,表示减值量。

⑦ 能不能给我一份计量经济学论文 用eviews分析的 我在网上看到你回答了别人的问题 十分感谢!

一元线性回归模型的置信区间与预测
多元线性回归模型的置信区间问题包括参数估计量的置信区间和被解释变量预测值的置信区间两个方面,在数理统计学中属于区间估计问题。所谓区间估计是研究用未知参数的点估计值(从一组样本观测值算得的)作为近似值的精确程度和误差范围,是一个必须回答的重要问题。

一、参数估计量的置信区间
在前面的课程中,我们已经知道,线性回归模型的参数估计量 是随机变量 的函数,即: ,所以它也是随机变量。在多次重复抽样中,每次的样本观测值不可能完全相同,所以得到的点估计值也不可能相同。现在我们用参数估计量的一个点估计值近似代表参数值,那么,二者的接近程度如何?以多大的概率达到该接近程度?这就要构造参数的一个区间,以点估计值为中心的一个区间(称为置信区间),该区间以一定的概率(称为置信水平)包含该参数。即回答 以何种置信水平位于 之中,以及如何求得a。
在变量的显著性检验中已经知道
(2.5.1)
这就是说,如果给定置信水平 ,从t分布表中查得自由度为(n-k-1)的临界值 ,那么t值处在 的概率是 。表示为



于是得到:在( )的置信水平下 的置信区间是
i=0,1 (2.5.3)
在某例子中,如果给定 ,查表得

从回归计算中得到
根据(2.5.2)计算得到 的置信区间分别为 和(0.1799,0.2401)
显然,参数 的置信区间要小。
在实际应用中,我们当然希望置信水平越高越好,置信区间越小越好。如何才能缩小置信区间?从(2.5.3)式中不难看出:(1)增大样本容量n。在同样的置信水平下,n越大,从t分布表中查得自由度为(n-k-1)的临界值 越小;同时,增大样本容量,在一般情况下可使估计值的标准差 减小,因为式中分母的增大是肯定的,分子并不一定增大。(2)更主要的是提高模型的拟合度,以减小残差平方和 。设想一种极端情况,如果模型完全拟合样本观测值,残差平方和为0,则置信区间也为0。(3)提高样本观测值的分散度。在一般情况下,样本观测值越分散,标准差越小。置信水平与置信区间是矛盾的。置信水平越高,在其他情况不变时,临界值 越大,置信区间越大。如果要求缩小置信区间,在其他情况不变时,就必须降低对置信水平的要求。

二、预测值的置信区间
1、 点预测
计量经济学模型的一个重要应用是经济预测。对于模型

如果给定样本以外的解释变量的观测值 ,有

因 是前述样本点以外的解释变量值,所以 和 是不相关的。引用已有的OLS的估计值,可以得到被解释变量 的点预测值:
(2.5.4)
但是,严格地说,这只是被解释变量的预测值的估计值,而不是预测值。原因在于两方面:一是模型中的参数估计量是不确定的,正如上面所说的;二是随机项的影响。所以,我们得到的仅是预测值的一个估计值,预测值仅以某一个置信水平处于以该估计值为中心的一个区间中。于是,又是一个区间估计问题。
2、 区间预测
如果已经知道实际的预测值 ,那么预测误差为

显然, 是一随机变量,可以证明



因为 由原样本的OLS估计值求得,而 与原样本不相关,故有:

可以计算出来:
(2.5.5)
(2.5.6)
因 和 均服从正态分布,可利用它们的性质构造统计量,求区间预测值。利用 构造统计量为:

将 用估计值 代入上式,有

这样,可得显著性水平 下 的置信区间为
(2.5.7)
(2.5.7)式称为 的均值区间预测。
同理,利用 构造统计量,有

将 用估计值 代入上式,有:

根据置信区间的原理,得显著性水平 下 的置信区间:
(2.5.8)
上式称为 的个值区间预测,显然,在同样的 下,个值区间要大于均值区间。(2.5.7)和(2.5.8)也可表述为: 的均值或个值落在置信区间内的概率为 , 即为预测区间的置信度。或者说,当给定解释变量值 后,只能得到被解释变量 或其均值 以 的置信水平处于某区间的结论。
经常听到这样的说法,“如果给定解释变量值,根据模型就可以得到被解释变量的预测值为……值”。这种说法是不科学的,也是计量经济学模型无法达到的。如果一定要给出一个具体的预测值,那么它的置信水平则为0;如果一定要回答解释变量以100%的置信水平处在什么区间中,那么这个区间是∞。
在实际应用中,我们当然也希望置信水平越高越好,置信区间越小越好,以增加预测的实用意义。如何才能缩小置信区间?从(2.5.5)和(2.5.6)式中不难看出:(1)增大样本容量n。在同样的置信水平下,n越大,从t分布表中查得自由度为(n-k-1)的临界值 越小;同时,增大样本容量,在一般情况下可使 减小,因为式中分母的增大是肯定的,分子并不一定增大。(2)更主要的是提高模型的拟合优度,以减小残差平方和 。设想一种极端情况,如果模型完全拟合样本观测值,残差平方和为0,则置信区间长度也为0,预测区间就是一点。(3)提高样本观测值的分散度。在一般情况下,样本观测值越分散,作为分母的 的值越大,致使区间缩小。置信水平与置信区间是矛盾的。置信水平越高,在其他情况不变时,临界值 越大,置信区间越大。如果要求缩小置信区间,在其他情况不变时,就必须降低对置信水平的要求。

四、一元线性回归模型参数估计实例
为了帮助读者理解一元线性回归模型参数估计的原理,下面以我国国家财政文教科学卫生事业费支出模型为例,不采用计量经济学应用软件,用手工计算,进行模型的参数估计。
经分析得到,我国国家财政中用于文教科学卫生事业费的支出,主要由国家财政收入决定,二者之间具有线性关系。于是可以建立如下的模型:

其中, 为第t年国家文教科学卫生事业费支出额(亿元), 为第t年国家财政收入额(亿元), ,为随机误差项, 为待估计的参数。选取1991—1997年的数据为样本,利用(2.2.6)和(2.2.7)的计算公式,分别计算参数估计值。
表2.2.1 有关数据表
年份 ED FI
1991 708 3149 -551 -2351 734 -26 -0.037
1992 793 3483 -466 -2017 804 -11 -0.014
1993 958 4349 -301 -1151 1001 -43 -0.045
1994 1278 5218 19 -282 1196 82 0.064
1995 1467 6242 208 742 1424 43 0.029
1996 1704 7408 445 1908 1685 19 0.011
1997 1904 8651 645 3151 1963 -59 -0.031
有关中间计算结果如下:

由电脑计算的参数估计值为

全部统计结果如下表。
从表中可看出,判定系数 0.99,表示以国家财政收入额来解释国家文教科学卫生事业费支出额,在1991至1997年间,拟合度相当理想。截距项 的估计值对应的t-统计量为0.47,不能通过显著性检验,即不能推翻 为0的假设;而一次系数 的估计值对应的t-统计量为20.34,不用查表即可知通过显著性检验,即 显著不为0,因果关系成立。F-统计量的值为413.58,也表示方程系数显著不为0。

表一:Eviews计算结果

Dependent Variable: ED
Method: Least Squares
Date: 09/21/02 Time: 16:22
Sample: 1991 1997
Included observations: 7
Variable Coefficient Std. Error t-Statistic Prob.
C 30.05237 63.90691 0.470252 0.6580
FI 0.223419 0.010986 20.33659 0.0000
R-squared 0.988055 Mean dependent var 1258.857
Adjusted R-squared 0.985666 S.D. dependent var 459.8972
S.E. of regression 55.06160 Akaike info criterion 11.08974
Sum squared resid 15158.90 Schwarz criterion 11.07428
Log likelihood -36.81408 F-statistic 413.5768
Durbin-Watson stat 1.644626 Prob(F-statistic) 0.000005

表二:不含截距项的Eviews计算结果:

Dependent Variable: ED
Method: Least Squares
Date: 09/21/02 Time: 16:19
Sample: 1991 1997
Included observations: 7
Variable Coefficient Std. Error t-Statistic Prob.
FI 0.228304 0.003337 68.40877 0.0000
R-squared 0.987526 Mean dependent var 1258.857
Adjusted R-squared 0.987526 S.D. dependent var 459.8972
S.E. of regression 51.36364 Akaike info criterion 10.84730
Sum squared resid 15829.34 Schwarz criterion 10.83957
Log likelihood -36.96556 Durbin-Watson stat 1.630622

Dependent Variable: LED
Method: Least Squares
Date: 09/21/02 Time: 16:21
Sample: 1991 1997
Included observations: 7
Variable Coefficient Std. Error t-Statistic Prob.
C -1.522329 0.383141 -3.973290 0.0106
LFI 1.005563 0.044764 22.46341 0.0000
R-squared 0.990188 Mean dependent var 7.077084
Adjusted R-squared 0.988226 S.D. dependent var 0.382958
S.E. of regression 0.041554 Akaike info criterion -3.288701
Sum squared resid 0.008634 Schwarz criterion -3.304156
Log likelihood 13.51045 F-statistic 504.6048
Durbin-Watson stat 1.930000 Prob(F-statistic) 0.000003

多元线性回归模型的参数估计实例
例2.3.1 建立中国消费模型。根据消费模型的一般形式,选择消费总额为被解释变量,国内生产总值和前一年的消费总额为解释变量,变量之间关系为简单线性关系,选取1981年至1996年统计数据为样本观测值。样本观测值列于表2.3.1中。
表2.3.1 中国消费数据表
年份 消费总额 国内生产总值 前一年消费额 年份 消费总额 国内生产总值 前一年消费额
1981 3309 4901 2976 1989 10556 16466 9360
1982 3638 5489 3309 1990 11362 1832 10556
1983 4021 6076 3638 1991 13146 21280 11362
1984 4694 7164 4021 1992 15952 25864 13146
1985 5773 8792 4694 1993 20182 34501 15952
1986 6542 10133 5773 1994 27216 47111 20182
1987 7451 11784 6542 1995 34529 59405 27216
1988 9360 14704 7451 1996 40172 68498 34529
以y代表消费总额, 代表国内生产总值, 代表前一年消费总额,应用计量经济分析软件包TSP6.5中普通最小二乘法估计模型,得到下列结果:
(2.3.13)
(6.83) (32.36) (5.70)

式中各项都是评价估计结果优劣的重要标准,后面将逐一介绍。这里仅讨论参数估计值。两个解释变量前的参数估计值分别为0.4809和0.1985,都为正数,且都处于0与1之间,常数项的估计值也为正,这些参数估计值的经济含义是合理的。随机误差项的方差的估计值为33739.5。
Oh,如果你是学习好的话肯定会做那么也就不用提问了,如果你学习不怎么样做出来的太好反而会让老师更加怀疑真实性,一般情况下能过关就OK了,做的太好老师问你了咋办。所以吧能过关一切都好的

⑧ 急求计量经济学论文,要有数据,eviews分析,很急,下周二交,拜托了

已发送两封邮件,请查收,希望对你有帮助,加油~

以后还需要检索论文的话可以再向我提问哦,举手之劳助人为乐!

网络用户:晓斌11蓝猫

阅读全文

与计量经济学eviews论文相关的资料

热点内容
中天高科国际贸易 浏览:896
都匀经济开发区2018 浏览:391
辉县农村信用社招聘 浏览:187
鹤壁市灵山文化产业园 浏览:753
国际金融和国际金融研究 浏览:91
乌鲁木齐有农村信用社 浏览:897
重庆农村商业银行ipo保荐机构 浏览:628
昆明市十一五中药材种植产业发展规划 浏览:748
博瑞盛和苑经济适用房 浏览:708
即墨箱包贸易公司 浏览:720
江苏市人均gdp排名2015 浏览:279
市场用经济学一览 浏览:826
中山2017年第一季度gdp 浏览:59
中国金融证券有限公司怎么样 浏览:814
国内金融机构的现状 浏览:255
西方经济学自考论述题 浏览:772
汽车行业产业链发展史 浏览:488
创新文化产业发展理念 浏览:822
国际贸易开题报告英文参考文献 浏览:757
如何理解管理经济学 浏览:22