Ⅰ 一阶差分后得到的平稳时间序列具有什么经济学含义
等你到了这个时候,自然就会知道的了,还是把
Ⅱ 想请教各位前辈什么是鞅差平稳序列, 满足下面条件的序列是鞅差平稳序列么
鞅差分过程不要求同方差,它如果加上同方差假定就是白噪声,没有鞅差分平稳这个概念,二阶矩平稳和鞅差分互不包含,是两类不同的随机过程。
Ⅲ 平稳序列的线性组合仍然是平稳过程吗
像random walk 这种项数不固定的,即使它也是white noise 的线性组合,但它不是平稳的。如果项数是固定的,像MA process,有q+1项,就一定是平稳的。
Ⅳ 平稳序列的一阶差分序列平稳吗
不可以 要同阶差分为平稳序列
对X的对数取一阶差分做平稳性检验,若平稳则可以做后面的分析;若不平稳则对XY的对数再做二阶差分的平稳性检验,同时平稳后再做后面的分析.不用做三阶了,没意义.
Ⅳ 判定数据序列平稳与否的方法都有哪些
1、 时间序列 取自某一个随机过程,如果此随机过程的随机特征不随时间变化,则我们称过程是平稳的;假如该随机过程的随机特征随时间变化,则称过程是非平稳的。
2、 宽平稳时间序列的定义:设时间序列 ,对于任意的 , 和 ,满足: 则称 宽平稳。
3、Box-Jenkins方法是一种理论较为完善的统计预测方法。他们的工作为实际工作者提供了对时间序列进行分析、预测,以及对ARMA模型识别、估计和诊断的系统方法。使ARMA模型的建立有了一套完整、正规、结构化的建模方法,并且具有统计上的完善性和牢固的理论基础。
4、ARMA模型三种基本形式:自回归模型(AR:Auto-regressive),移动平均模型(MA:Moving-Average)和混合模型(ARMA:Auto-regressive Moving-Average)。
(1) 自回归模型AR(p):如果时间序列 满足
其中 是独立同分布的随机变量序列,且满足:
,
则称时间序列 服从p阶自回归模型。或者记为 。
平稳条件:滞后算子多项式 的根均在单位圆外,即 的根大于1。
(2) 移动平均模型MA(q):如果时间序列 满足
则称时间序列 服从q阶移动平均模型。或者记为 。
平稳条件:任何条件下都平稳。
(3) ARMA(p,q)模型:如果时间序列 满足
则称时间序列 服从(p,q)阶自回归移动平均模型。或者记为 。
特殊情况:q=0,模型即为AR(p),p=0, 模型即为MA(q)。
2、模型参数的估计
①初估计
i、 AR(p)模型参数的Yule-Walker估计
特例:对于一阶自回归模型AR(1), ,对于二阶自回归模型AR(2), , 。
ii、MA(q)模型参数估计
特例:对于一阶移动平均模型MA(1), ,对于二阶移动平均模型MA(2), , 。
iii、ARMA(p,q)模型的参数估计
模型很复杂,一般利用统计分析软件包完成。
②精估计
ARMA(p,q)模型参数的精估计,一般采用极大似然估计,由于模型结构的复杂性,无法直接给出参数的极大似然估计,只能通过迭代方法来完成,这时,迭代初值常常利用初估计得到的值。
3、ARMA(p,q)序列预报
设平稳时间序列 是一个ARMA(p,q)过程,则其最小二乘预测: 。
i、AR(p)模型预测
,
ii、ARMA(p,q)模型预测
,其中 。
iii、预测误差
预测误差为: 。l步线性最小方差预测的方差和预测步长l有关,而与预测的时间原点t无关。预测步长l越大,预测误差的方差也越大,因而预测的准确度就会降低。所以一般不能用ARMA(p,q)作为长期预测模型。
iv、预测的置信区间
预测的95%置信区间:
不知道对你有没帮助
Ⅵ 序列平稳性检验检验形式是什么意思
单位根检验、协整检验和格兰杰因果关系检验三者之间的关系实证检验步骤:先做单位根检验,看变量序列是否平稳序列,若平稳,可构造回归模型等经典计量经济学模型;若非平稳,进行差分,当进行到第i次差分时序列平稳,则服从i阶单整(注意趋势、截距不同情况选择,根据P值和原假设判定)。若所有检验序列均服从同阶单整,可构造VAR模型,做协整检验(注意滞后期的选择),判断模型内部变量间是否存在协整关系,即是否存在长期均衡关系。如果有,则可以构造VEC模型或者进行Granger因果检验,检验变量之间“谁引起谁变化”,即因果关系。一、讨论一1、单位根检验是序列的平稳性检验,如果不检验序列的平稳性直接OLS容易导致伪回归。2、当检验的数据是平稳的(即不存在单位根),要想进一步考察变量的因果联系,可以采用格兰杰因果检验,但要做格兰杰检验的前提是数据必须是平稳的,否则不能做。3、当检验的数据是非平稳(即存在单位根),并且各个序列是同阶单整(协整检验的前提),想进一步确定变量之间是否存在协整关系,可以进行协整检验,协整检验主要有EG两步法和JJ检验A、EG两步法是基于回归残差的检验,可以通过建立OLS模型检验其残差平稳性B、JJ检验是基于回归系数的检验,前提是建立VAR模型(即模型符合ADL模式)4、当变量之间存在协整关系时,可以建立ECM进一步考察短期关系,Eviews这里还提供了一个Wald-Granger检验,但此时的格兰杰已经不是因果关系检验,而是变量外生性检验,请注意识别二、讨论二1、格兰杰检验只能用于平稳序列!这是格兰杰检验的前提,而其因果关系并非我们通常理解的因与果的关系,而是说x的前期变化能有效地解释y的变化,所以称其为“格兰杰原因”。2、非平稳序列很可能出现伪回归,协整的意义就是检验它们的回归方程所描述的因果关系是否是伪回归,即检验变量之间是否存在稳定的关系。所以,非平稳序列的因果关系检验就是协整检验。3、平稳性检验有3个作用:1)检验平稳性,若平稳,做格兰杰检验,非平稳,作协正检验。2)协整检验中要用到每个序列的单整阶数。3)判断时间学列的数据生成过程。三、讨论三其实很多人存在误解。有如下几点,需要澄清:第一,格兰杰因果检验是检验统计上的时间先后顺序,并不表示而这真正存在因果关系,是否呈因果关系需要根据理论、经验和模型来判定。第二,格兰杰因果检验的变量应是平稳的,如果单位根检验发现两个变量是不稳定的,那么,不能直接进行格兰杰因果检验,所以,很多人对不平稳的变量进行格兰杰因果检验,这是错误的。第三,协整结果仅表示变量间存在长期均衡关系,那么,到底是先做格兰杰还是先做协整呢?因为变量不平稳才需要协整,所以,首先因对变量进行差分,平稳后,可以用差分项进行格兰杰因果检验,来判定变量变化的先后时序,之后,进行协整,看变量是否存在长期均衡。第四,长期均衡并不意味着分析的结束,还应考虑短期波动,要做误差修正检验。
Ⅶ 在eviews里面如何将非平稳序列变成平稳序列
用genr d(x)=D(x)作一阶差分,判断差分后序列的平稳性;或者将原始数据取对数后看序列是否平稳
Ⅷ 平稳序列常用的均值估计是什么
哥们你不会是杨燕的学生吧
Ⅸ 平稳随机序列
在信息处理与传输中,经常遇到一类称为平稳随机序列的重要信号。所谓平稳随机序列,是指它的N维概率分布函数或N维概率密度函数与时间n的起始位置无关。换句话说,平稳随机序列的统计特性不随时间的平移而发生变化。如果将随机序列在时间上平移k,其统计特性满足等式:
地球物理信息处理基础
这类随机序列就称为平稳随机序列。然而,在实际情况中,这一平稳条件很难得到满足,因此常将这类随机序列称为狭义(严)平稳随机序列。大多数情况下,虽然随机序列并不是平稳随机序列,但是它们的均值和均方值却不随时间而改变,其相关函数仅是时间差的函数,一般将这一类随机序列称为广义(宽)平稳随机序列。下面我们重点分析研究这类平稳随机序列。为简单起见,将广义平稳随机序列简称为平稳随机序列。
平稳随机序列的一维概率密度函数与时间无关,因此均值、方差和均方值均与时间无关,它们可分别表示为
μx=E[X(n)]=E[X(n+m)] (1-17)
地球物理信息处理基础
二维概率密度函数仅仅取决于时间差,与起始时间无关;自相关函数与自协方差函数是时间差的函数。自相关函数rxx(m)与自协方差函数cxx(m)(用cxx(m)表示covxx(m))分别为
rxx(m)=E[X(n+m)X*(n)] (1-20)
cxx(m)=E{[X(n+m)-μx][X(n)-μx]*} (1-21)
对于两个各自平稳而且联合平稳的随机序列,其互相关函数为
rxy(m)=rxy(n+m,n)=E[X(n+m)Y*(n)] (1-22)
显然,对于自相关函数和互相关函数,下面公式成立
地球物理信息处理基础
如果对于所有的m,满足rxy(m)=0,则称两个随机序列互为正交。如果对于所有的m,满足rxy(m)=μxμy,cxy(m)=0,则称两个随机序列互不相关。
实平稳随机序列的相关函数、协方差函数具有以下重要性质
(1)自相关函数和自协方差函数是m的偶函数,即
rxx(m)=rxx(-m),cxx(m)=cxx(-m) (1-25)
而互相关函数和互协方差函数有如下关系
rxy(m)=ryx(-m),cxy(m)=cyx(-m) (1-26)
(2)rxx(0)在数值上等于随机序列的平均功率,即
地球物理信息处理基础
(3)
rxx(0)≥|rxx(m)| (1-28)
(4)
地球物理信息处理基础
(5)
上两式说明大多数平稳随机序列内部的相关性随着时间差的变大,愈来愈弱。
(6)
地球物理信息处理基础
Ⅹ 关于时间序列数据的计量经济学论文先进行平稳性检验,是非平稳的,进
是的。所以在做回归之前要对个每个变量做单根检验。Eviews里点unit root test,先选0阶看看平稳不,若不平再选一阶(level1),观察平稳不。若到了二阶还不平稳,那就最好放弃这个变量吧,因为三阶差分后的各个变量之间关系不那么强了,研究出来意义也不大。伪回归还不是很讨厌,多重共线才是硬伤啊。。。。