① 计量经济学课题:需要提一个课题做多元回归分析写报告的。不知道研究什么方向好,请贵人指导 有兴趣的课题
我不知道你的这个报告是以什么为目的的?
如果是以熟悉模型检验,经济意义检验以及其他的共线,异方差和设定误差的熟悉为目的的话,你可以从书里随意找到一个多元的模型。然后在统计数据里(时间序列最好)找到数据。然后你自己按照程序,一一检验得到答案即可。
如果是以研究方向为主,那么这个就有些复杂了。通常你需要阅读很多的文献。中文多以(。。。。实证分析)为题的文章。从这些文章中找到你认为不妥或者可以改善的地方。这是一个捷径。自己去找方向,在你没有一定阅读量的基础上,是很难找到的。其结果就是,要么自己设定的模型本身就是错的。要么就是前人其实已经研究过了。所以在你感兴趣的领域找些前人已做的检验是最好的。
② 计量经济学,求各位高手做一下这道题. 问题:(1)根据以上回归结果,写出回归分析结果报告。
如果没猜错的话,你的模型应该是Y=AK^aL^b,然后取得对数形式做的线性回归,是宏观经济回学里面一个很简单的模型。答
根据参数估计结果,资本对产出的弹性为0.609,劳动对产出的弹性为0.36,这个结果非常好,两者加起来几乎等于1,符合理论预期。k和l在10%的显著性下通过t检验,但常数项没有通过t检验。调整的可决系数比较高,模型拟合较好。但你的f统计值貌似非常小,通不过f检验,模型设定估计有问题,你去掉常数项再做一次试试。
③ 关于计量经济学的报告
最好有以下几块东西
1、选定研究对象
(确定被解释变量,说明选题的意义和原因等。)
2、确定解释变量,尽量完备地考虑到可能的相关变量供选择,并初步判定个变量对被解释变量的影响方向。
( 作出相应的说明 )
3、确定理论模型或函数式
(根据相应的理论和经济关系设立模型形式,并提出假设,系数是正的还是负的等。)
(二)数据的收集和整理
(三)数据处理和回归分析
(先观察数据的特点,观看和输出散点图,最后选择相应的变量关系式进行OLS回归,并输出会归结果。)
(四)回归结果分析和检验
(写出模型估计的结果)
1、回归结果的经济理论检验,方向正确否?理论一致否?
2、统计检验,t检验 F 检验 R2— 拟合优度检验
3、模型设定形式正确否?可试试其他形式。
4、模型的稳定性检验。
(五)模型的修正
(对所发现的模型变量选择问题、设定偏误、模型不稳定等,进行修正。)
(六)确定模型
(七)预测
实验三 多元回归模型
【实验目的】
掌握建立多元回归模型和比较、筛选模型的方法。
【实验内容】
建立我国国有独立核算工业企业生产函数。根据生产函数理论,生产函数的基本形式为: 。其中,L、K分别为生产过程中投入的劳动与资金,时间变量 反映技术进步的影响。表3-1列出了我国1978-1994年期间国有独立核算工业企业的有关统计资料;其中产出Y为工业总产值(可比价),L、K分别为年末职工人数和固定资产净值(可比价)。
表3-1 我国国有独立核算工业企业统计资料
年份 时间
工业总产值
Y(亿元) 职工人数
L(万人) 固定资产
K(亿元)
1978 1 3289.18 3139 2225.70
1979 2 3581.26 3208 2376.34
1980 3 3782.17 3334 2522.81
1981 4 3877.86 3488 2700.90
1982 5 4151.25 3582 2902.19
1983 6 4541.05 3632 3141.76
1984 7 4946.11 3669 3350.95
1985 8 5586.14 3815 3835.79
1986 9 5931.36 3955 4302.25
1987 10 6601.60 4086 4786.05
1988 11 7434.06 4229 5251.90
1989 12 7721.01 4273 5808.71
1990 13 7949.55 4364 6365.79
1991 14 8634.80 4472 7071.35
1992 15 9705.52 4521 7757.25
1993 16 10261.65 4498 8628.77
1994 17 10928.66 4545 9374.34
资料来源:根据《中国统计年鉴-1995》和《中国工业经济年鉴-1995》计算整理
【实验步骤】
一、建立多元线性回归模型
一建立包括时间变量的三元线性回归模型;
在命令窗口依次键入以下命令即可:
⒈建立工作文件: CREATE A 78 94
⒉输入统计资料: DATA Y L K
⒊生成时间变量 : GENR T=@TREND(77)
⒋建立回归模型: LS Y C T L K
则生产函数的估计结果及有关信息如图3-1所示。
图3-1 我国国有独立核算工业企业生产函数的估计结果
因此,我国国有独立工业企业的生产函数为:
(模型1)
=(-0.252) (0.672) (0.781) (7.433)
模型的计算结果表明,我国国有独立核算工业企业的劳动力边际产出为0.6667,资金的边际产出为0.7764,技术进步的影响使工业总产值平均每年递增77.68亿元。回归系数的符号和数值是较为合理的。 ,说明模型有很高的拟合优度,F检验也是高度显著的,说明职工人数L、资金K和时间变量 对工业总产值的总影响是显著的。从图3-1看出,解释变量资金K的 统计量值为7.433,表明资金对企业产出的影响是显著的。但是,模型中其他变量(包括常数项)的 统计量值都较小,未通过检验。因此,需要对以上三元线性回归模型做适当的调整,按照统计检验程序,一般应先剔除 统计量最小的变量(即时间变量)而重新建立模型。
二建立剔除时间变量的二元线性回归模型;
命令:LS Y C L K
则生产函数的估计结果及有关信息如图3-2所示。
图3-2 剔除时间变量后的估计结果
因此,我国国有独立工业企业的生产函数为:
(模型2)
=(-2.922) (4.427) (14.533)
从图3-2的结果看出,回归系数的符号和数值也是合理的。劳动力边际产出为1.2085,资金的边际产出为0.8345,表明这段时期劳动力投入的增加对我国国有独立核算工业企业的产出的影响最为明显。模型2的拟合优度较模型1并无多大变化,F检验也是高度显著的。这里,解释变量、常数项的 检验值都比较大,显著性概率都小于0.05,因此模型2较模型1更为合理。
三建立非线性回归模型——C-D生产函数。
C-D生产函数为: ,对于此类非线性函数,可以采用以下两种方式建立模型。
方式1:转化成线性模型进行估计;
在模型两端同时取对数,得:
在EViews软件的命令窗口中依次键入以下命令:
GENR LNY=log(Y)
GENR LNL=log(L)
GENR LNK=log(K)
LS LNY C LNL LNK
则估计结果如图3-3所示。
图3-3 线性变换后的C-D生产函数估计结果
即可得到C-D生产函数的估计式为:
(模型3)
= (-1.172) (2.217) (9.310)
即:
从模型3中看出,资本与劳动的产出弹性都是在0到1之间,模型的经济意义合理,而且拟合优度较模型2还略有提高,解释变量都通过了显著性检验。
方式2:迭代估计非线性模型,迭代过程中可以作如下控制:
⑴在工作文件窗口中双击序列C,输入参数的初始值;
⑵在方程描述框中点击Options,输入精度控制值。
控制过程:
①参数初值:0,0,0;迭代精度:10-3;
则生产函数的估计结果如图3-4所示。
图3-4 生产函数估计结果
此时,函数表达式为:
(模型4)
=(0.313)(-2.023)(8.647)
可以看出,模型4中劳动力弹性 =-1.01161,资金的产出弹性 =1.0317,很显然模型的经济意义不合理,因此,该模型不能用来描述经济变量间的关系。而且模型的拟合优度也有所下降,解释变量L的显著性检验也未通过,所以应舍弃该模型。
②参数初值:0,0,0;迭代精度:10-5;
图3-5 生产函数估计结果
从图3-5看出,将收敛的误差精度改为10-5后,迭代100次后仍报告不收敛,说明在使用迭代估计法时参数的初始值与误差精度或迭代次数设置不当,会直接影响模型的估计结果。
③参数初值:0,0,0;迭代精度:10-5,迭代次数1000;
图3-6 生产函数估计结果
此时,迭代953次后收敛,函数表达式为:
(模型5)
=(0.581)(2.267)(10.486)
从模型5中看出,资本与劳动的产出弹性都是在0到1之间,模型的经济意义合理, ,具有很高的拟合优度,解释变量都通过了显著性检验。将模型5与通过方式1所估计的模型3比较,可见两者是相当接近的。
④参数初值:1,1,1;迭代精度:10-5,迭代次数100;
图3-7 生产函数估计结果
此时,迭代14次后收敛,估计结果与模型5相同。
比较方式2的不同控制过程可见,迭代估计过程的收敛性及收敛速度与参数初始值的选取密切相关。若选取的初始值与参数真值比较接近,则收敛速度快;反之,则收敛速度慢甚至发散。因此,估计模型时最好依据参数的经济意义和有关先验信息,设定好参数的初始值。
二、比较、选择最佳模型
估计过程中,对每个模型检验以下内容,以便选择出一个最佳模型:
一回归系数的符号及数值是否合理;
二模型的更改是否提高了拟合优度;
三模型中各个解释变量是否显著;
四残差分布情况
以上比较模型的一、二、三步在步骤一中已有阐述,现分析步骤一中5个不同模型的残差分布情况。
分别在模型1~模型5的各方程窗口中点击View/Actual, Fitted, Resial/ Actual, Fitted, Resial Table(图3-8),可以得到各个模型相应的残差分布表(图3-9至图3-13)。
可以看出,模型4的残差在前段时期内连续取负值且不断增大,在接下来的一段时期又连续取正值,说明模型设定形式不当,估计过程出现了较大的偏差。而且,模型4的表达式也说明了模型的经济意义不合理,不能用于描述我国国有工业企业的生产情况,应舍弃此模型。
模型1的各期残差中大多数都落在 的虚线框内,且残差分别不存在明显的规律性。但是,由步骤一中的分析可知,模型1中除了解释变量K之外,其余变量均为通过变量显著性检验,因此,该模型也应舍弃。
模型2、模型3、模型5都具有合理的经济意义,都通过了 检验和F检验,拟合优度非常接近,理论上讲都可以描述资本、劳动的投入与产出的关系。但从图3-13看出,模型5的近期误差较大,因此也可以舍弃该模型。
最后将模型2与模型3比较发现,模型3的近期预测误差略小,拟合优度比模型2略有提高,因此可以选择模型2为我国国有工业企业生产函数。
④ 经济的回归分析是什么回归分析方法是计量经济学的
回归分析是研究一个变量(因变量)关于另一个变量(自变量)的具体依赖关系的计版算方法和理论权。回归分析主要内容包括: 1、根据样本观察值对经济计量模型参数进行估计,求得回归方程 2、对回归方程、参数估计值进行显著性检验 3、利用回归方程进行分析、评价即预测
⑤ 计量经济学一元回归模型的的结论怎么写
根据回归出来的模型复和制参数,表达应变量y和自变量x的关系,他们的实际意义。比如截距α,x前面的系数β的意义:说明y和x是什么关系,单位x的变化会引起y怎样的变化等。因为有error term(那个e),还可以简单分析一下可能存在的其他影响y的因素。
举个例子,Yi=-1.924+0.19Xi,Y是每个家庭上缴的所得税,X是家庭的收入,单位是千美元。
这里系数β是0.19,这个回归的意义是,保持其他变量恒定,家庭的收入每增加$1000,则上缴的所得税相应增加$190。或者也可以说,当家庭收入每增加一个单位,相应的所得税增加0.19单位。这里的截距是-1.924,在经济学概念上没有意义的(因为当x=0每个家庭收入为0对于我们的回归无意义),但是理论上来说,就是当一个家庭的收入为0时,应缴的税是(-)$1924。或者如果我们从“负所得税”的概念来解释这个数字的话,那就是说,在这种情况下,事实上政府付给该家庭$1924。
就这样分析结论,能理解么??
⑥ 计量经济学回归模型统计报告
我不玩了(ノಥ益ಥ)
⑦ 计量经济学回归分析结果怎么分析
这两天就学回归分析,结果让我们更加了解经济学的合理性,合规性,让我们更加懂得经济的是有规律可行的
⑧ 计量经济的回归分析是什么
回归分析方法是计量经济学的主要方法。“回归分析”这个词最初是由一位叫弗朗回西斯 高尔顿答的英国学者提出来的,他用收集的样本数据来说明孩子的身高与父母身高及人口平均高度的关系。现代计量经济学所用的回归分析方法是用实际数据来解释变量之间的关系。