① 什么叫博弈论
博弈论有被称为对策论(Games Theory),是研究具有斗争或竞争性 质现象的理论和方法,它既是现代数学的一个新分支,也是运筹学的一个重要学科。
博弈论的发展
博弈论思想古已有之,我国古代的《孙子兵法》就不仅是一部军事著作,而且算是最早的一部博弈论专著。博弈论最初主要研究象棋、桥牌、赌博中的胜负问题,人们对博弈局势的把握只停留在经验上,没有向理论化发展,正式发展成一门学科则是在20世纪初。1928年冯·诺意曼证明了博弈论的基本原理,从而宣告了博弈论的正式诞生。1944年,冯·诺意曼摩根斯坦共著的划时代巨著《博弈论与经济行为》将二人博弈推广到n人博弈结构并将博弈论系统的应用于经济领域,从而奠定了这一学科的基础和理论体系。谈到博弈论就不能忽略博弈论天才纳什,纳什的开创性论文《n人博弈的均衡点》(1950),《非合作博弈》(1951)等等,给出了纳什均衡的概念和均衡存在定理。 此外,塞尔顿、哈桑尼的研究也对博弈论发展起到推动作用。今天博弈论已发展成一门较完善的的学科。
博弈论的基本概念
博弈要素
(1)局中人:在一场竞赛或博弈中,每一个有决策权的参与者成为一个局中人。只有两个局中人的博弈现象称为“两人博弈”,而多于两个局中人的博弈称为 “多人博弈”。
(2)策略:一局博弈中,每个局中人都有选择实际可行的完整的行动方案,即方案不是某阶段的行动方案,而是指导整个行动的一个方案,一个局中人的一个可行的自始至终全局筹划的一个行动方案,称为这个局中人的一个策略。如果在一个博弈中局中人都总共有有限个策略,则称为“有限博弈”,否则称为“无限博弈”。
(3)得失:一局博弈结局时的结果称为得失。每个局中人在一局博弈结束时的得失,不仅与该局中人自身所选择的策略有关,而且与全局中人所取定的一组策略有关。所以,一局博弈结束时每个局中人的“得失”是全体局中人所取定的一组策略的函数,通常称为支付(payoff)函数。
(4)对于博弈参与者来说,存在着一博弈结果
(5)博弈涉及到均衡:均衡是平衡的意思,在经济学中,均衡意即相关量处于稳定值。在供求关系中,某一商品市场如果在某一价格下,想以此价格买此商品的人均能买到,而想卖的人均能卖出,此时我们就说,该商品的供求达到了均衡。所谓纳什均衡,它是一稳定的博弈结果。
纳什均衡(Nash Equilibrium):在一策略组合中,所有的参与者面临这样一种情况,当其他人不改变策略时,他此时的策略是最好的。也就是说,此时如果他改变策略他的支付将会降低。在纳什均衡点上,每一个理性的参与者都不会有单独改变策略的冲动。纳什均衡点存在性证明的前提是“博弈均衡偶”概念的提出。所谓“均衡偶”是在二人零和博弈中,当局中人A采取其最优策略a*,局中人B也采取其最优策略b*,如果局中人仍采取b*,而局中人A却采取另一种策略a,那么局中人A的支付不会超过他采取原来的策略a*的支付。这一结果对局中人B亦是如此。
这样,“均衡偶”的明确定义为:一对策略a*(属于策略集A)和策略b*(属于策略集B)称之为均衡偶,对任一策略a(属于策略集A)和策略b(属于策略集B),总有:偶对(a, b*)≤偶对(a*,b*)≤偶对(a*,b)。
对于非零和博弈也有如下定义:一对策略a*(属于策略集A)和策略b*(属于策略集B)称为非零和博弈的均衡偶,对任一策略a(属于策略集A)和策略 b(属于策略集B),总有:对局中人A的偶对(a, b*) ≤偶对(a*,b*);对局中人B的偶对(a*,b)≤偶对(a*,b*)。
有了上述定义,就立即得到纳什定理:
任何具有有限纯策略的二人博弈至少有一个均衡偶。这一均衡偶就称为纳什均衡点。
纳什定理的严格证明要用到不动点理论,不动点理论是经济均衡研究的主要工具。通俗地说,寻找均衡点的存在性等价于找到博弈的不动点。
纳什均衡点概念提供了一种非常重要的分析手段,使博弈论研究可以在一个博弈结构里寻找比较有意义的结果。
但纳什均衡点定义只局限于任何局中人不想单方面变换策略,而忽视了其他局中人改变策略的可能性,因此,在很多情况下,纳什均衡点的结论缺乏说服力,研究者们形象地称之为“天真可爱的纳什均衡点”。
塞尔顿(R·Selten)在多个均衡中剔除一些按照一定规则不合理的均衡点,从而形成了两个均衡的精炼概念:子博弈完全均衡和颤抖的手完美均衡。
博弈的类型
(1)合作博弈——研究人们达成合作时如何分配合作得到的收益,即收益分配问题。
(2)非合作博弈——研究人们在利益相互影响的局势中如何选决策使自己的收益最大,即策略选择问题。
(3)完全信息不完全信息博弈:参与者对所有参与者的策略空间及策略组合下的支付有充了解称为完全信息;反之,则称为不完全信息。
(4)静态博弈和动态博弈
静态博弈:指参与者同时采取行动,或者尽管有先后顺序,但后行动者不知道先行动者的策略。
动态博弈:指双方的的行动有先后顺序并且后行动者可以知道先行动者的策略。
财产分配问题和夏普里值(Shapley value)
考虑这样一个合作博弈:a、b、c、投票决定如何分配100万,他们分别拥有50%、40%、10%的权力,规则规定,当超过50%的票认可了某种方案时才能通过。那么如何分配才是合理的呢?按票力分配,a50万、b40万、c10万c向a提出:a70万、b0、c30万b向a提出:a80万、b20 万、c0……
权力指数:每个决策者在决策时的权力体现在他在形成的获胜联盟中的“关键加入者”的个数,这个“关键加入者”的个数就被称为权利指数。
夏普里值:在各种可能的联盟次序下,参与者对联盟的边际贡献之和除以各种可能的联盟组合。
次序 abc acb bac bca cab cba
关键加入者 a c a c a b
由此计算出a,b,c的夏普里值分别为4/6,1/6,1/6
所以a,b,c应分别获得100万的2/3,1/3,1/3。
博弈论的意义
弈论的研究方法和其他许多利用数学工具研究社会经济现象的学科一样,都是从复杂的现象中抽象出基本的元素,对这些元素构成的数学模型进行分析,而后逐步引入对其形势产影响的其他因素,从而分析其结果。
基于不同抽象水平,形成三种博弈表述方式,标准型、扩展型和特征函数型利用这三种表述形式,可以研究形形色色的问题。因此,它被称为“社会科学的数学”从理论上讲,博弈论是研究理性的行动者相互作用的形式理论,而实际上正深入到经济学、政治学、社会学等等,被各门社会科学所应用。
博弈论是指某个个人或是组织,面对一定的环境条件,在一定的规则约束下,依靠所掌握的信息,从各自选择的行为或是策略进行选择并加以实施,并从各自取得相应结果或收益的过程,在经济学上博弈论是个非常重要的理论概念。
什么是博弈论?古语有云,世事如棋。生活中每个人如同棋手,其每一个行为如同在一张看不见的棋盘上布一个子,精明慎重的棋手们相互揣摩、相互牵制,人人争赢,下出诸多精彩纷呈、变化多端的棋局。博弈论是研究棋手们 “出棋” 着数中理性化、逻辑化的部分,并将其系统化为一门科学。换句话说,就是研究个体如何在错综复杂的相互影响中得出最合理的策略。事实上,博弈论正是衍生于古老的游戏或曰博弈如象棋、扑克等。数学家们将具体的问题抽象化,通过建立自完备的逻辑框架、体系研究其规律及变化。这可不是件容易的事情,以最简单的二人对弈为例,稍想一下便知此中大有玄妙:若假设双方都精确地记得自己和对手的每一步棋且都是最“理性” 的棋手,甲出子的时候,为了赢棋,得仔细考虑乙的想法,而乙出子时也得考虑甲的想法,所以甲还得想到乙在想他的想法,乙当然也知道甲想到了他在想甲的想法…
面对如许重重迷雾,博弈论怎样着手分析解决问题,怎样对作为现实归纳的抽象数学问题求出最优解、从而为在理论上指导实践提供可能性呢?现代博弈理论由匈牙利大数学家冯·诺伊曼于20世纪20年代开始创立,1944年他与经济学家奥斯卡·摩根斯特恩合作出版的巨著《博弈论与经济行为》,标志着现代系统博弈理论的初步形成。对于非合作、纯竞争型博弈,诺伊曼所解决的只有二人零和博弈--好比两个人下棋、或是打乒乓球,一个人赢一着则另一个人必输一着,净获利为零。在这里抽象化后的博弈问题是,已知参与者集合(两方) ,策略集合(所有棋着) ,和盈利集合(赢子输子) ,能否且如何找到一个理论上的“解” 或“平衡” ,也就是对参与双方来说都最“合理” 、最优的具体策略?怎样才是“合理” ?应用传统决定论中的“最小最大” 准则,即博弈的每一方都假设对方的所有功略的根本目的是使自己最大程度地失利,并据此最优化自己的对策,诺伊曼从数学上证明,通过一定的线性运算,对於每一个二人零和博弈,都能够找到一个“最小最大解” 。通过一定的线性运算,竞争双方以概率分布的形式随机使用某套最优策略中的各个步骤,就可以最终达到彼此盈利最大且相当。当然,其隐含的意义在於,这套最优策略并不依赖于对手在博弈中的操作。用通俗的话说,这个著名的最小最大定理所体现的基本“理性” 思想是“抱最好的希望,做最坏的打算” 。
经济学中的“智猪博弈”(Pigs’payoffs)
这个例子讲的是:猪圈里有两头猪,一头大猪,一头小猪。猪圈的一边有个踏板,每踩一下踏板,在远离踏板的猪圈的另一边的投食口就会落下少量的食物。如果有一只猪去踩踏板,另一只猪就有机会抢先吃到另一边落下的食物。当小猪踩动踏板时,大猪会在小猪跑到食槽之前刚好吃光所有的食物;若是大猪踩动了踏板,则还有机会在小猪吃完落下的食物之前跑到食槽,争吃到另一半残羹。
那么,两只猪各会采取什么策略?答案是:小猪将选择“搭便车”策略,也就是舒舒服服地等在食槽边;而大猪则为一点残羹不知疲倦地奔忙于踏板和食槽之间。
原因何在?因为,小猪踩踏板将一无所获,不踩踏板反而能吃上食物。对小猪而言,无论大猪是否踩动踏板,不踩踏板总是好的选择。反观大猪,已明知小猪是不会去踩动踏板的,自己亲自去踩踏板总比不踩强吧,所以只好亲力亲为了。
“小猪躺着大猪跑”的现象是由于故事中的游戏规则所导致的。规则的核心指标是:每次落下的事物数量和踏板与投食口之间的距离。
如果改变一下核心指标,猪圈里还会出现同样的“小猪躺着大猪跑”的景象吗?试试看。
改变方案一:减量方案。投食仅原来的一半分量。结果是小猪大猪都不去踩踏板了。小猪去踩,大猪将会把食物吃完;大猪去踩,小猪将也会把食物吃完。谁去踩踏板,就意味着为对方贡献食物,所以谁也不会有踩踏板的动力了。
如果目的是想让猪们去多踩踏板,这个游戏规则的设计显然是失败的。
改变方案二:增量方案。投食为原来的一倍分量。结果是小猪、大猪都会去踩踏板。谁想吃,谁就会去踩踏板。反正对方不会一次把食物吃完。小猪和大猪相当于生活在物质相对丰富的“共产主义”社会,所以竞争意识却不会很强。
对于游戏规则的设计者来说,这个规则的成本相当高(每次提供双份的食物);而且因为竞争不强烈,想让猪们去多踩踏板的效果并不好。
改变方案三:减量加移位方案。投食仅原来的一半分量,但同时将投食口移到踏板附近。结果呢,小猪和大猪都在拼命地抢着踩踏板。等待者不得食,而多劳者多得。每次的收获刚好消费完。
对于游戏设计者,这是一个最好的方案。成本不高,但收获最大。
原版的“智猪博弈”故事给了竞争中的弱者(小猪)以等待为最佳策略的启发。但是对于社会而言,因为小猪未能参与竞争,小猪搭便车时的社会资源配置的并不是最佳状态。为使资源最有效配置,规则的设计者是不愿看见有人搭便车的,政府如此,公司的老板也是如此。而能否完全杜绝“搭便车”现象,就要看游戏规则的核心指标设置是否合适了。
比如,公司的激励制度设计,奖励力度太大,又是持股,又是期权,公司职员个个都成了百万富翁,成本高不说,员工的积极性并不一定很高。这相当于“智猪博弈”增量方案所描述的情形。但是如果奖励力度不大,而且见者有份(不劳动的“小猪”也有),一度十分努力的大猪也不会有动力了----就象“智猪博弈”减量方案一所描述的情形。最好的激励机制设计就象改变方案三----减量加移位的办法,奖励并非人人有份,而是直接针对个人(如业务按比例提成),既节约了成本(对公司而言),又消除了“搭便车”现象,能实现有效的激励。
许多人并未读过“智猪博弈”的故事,但是却在自觉地使用小猪的策略。股市上等待庄家抬轿的散户;等待产业市场中出现具有赢利能力新产品、继而大举仿制牟取暴利的游资;公司里不创造效益但分享成果的人,等等。因此,对于制订各种经济管理的游戏规则的人,必须深谙“智猪博弈”指标改变的个中道理。
纳什博弈论的原理与应用
1950年和1951年纳什的两篇关于非合作博弈论的重要论文,彻底改变了人们对竞争和市场的看法。他证明了非合作博弈及其均衡解,并证明了均衡解的存在性,即著名的纳什均衡。从而揭示了博弈均衡与经济均衡的内在联系。纳什的研究奠定了现代非合作博弈论的基石,后来的博弈论研究基本上都沿着这条主线展开的。然而,纳什天才的发现却遭到冯·诺依曼的断然否定,在此之前他还受到爱因斯坦的冷遇。但是骨子里挑战权威、藐视权威的本性,使纳什坚持了自己的观点,终成一代大师。要不是30多年的严重精神病折磨,恐怕他早已站在诺贝尔奖的领奖台上了,而且也绝不会与其他人分享这一殊荣。
纳什是一个非常天才的数学家,他的主要贡献是1950至1951年在普林斯顿读博士学位时做出的。然而,他的天才发现———非合作博弈的均衡,即“纳什均衡”并不是一帆风顺的。
1948年纳什到普林斯顿大学读数学系的博士。那一年他还不到20岁。当时普林斯顿可谓人杰地灵,大师如云。爱因斯坦、冯·诺依曼、列夫谢茨(数学系主任)、阿尔伯特·塔克、阿伦佐·切奇、哈罗德·库恩、诺尔曼·斯蒂恩罗德、埃尔夫·福克斯……等全都在这里。博弈论主要是由冯·诺依曼(1903— 1957)创所立的。他是一位出生于匈牙利的天才的数学家。他不仅创立了经济博弈论,而且发明了计算机。早在20世纪初,塞梅鲁(Zermelo)、鲍罗 (Borel)和冯·诺伊曼已经开始研究博弈的准确的数学表达,直到1939年,冯·诺依曼遇到经济学家奥斯卡·摩根斯特恩(Oskar Morgenstern),并与其合作才使博弈论进入经济学的广阔领域。
1944年他与奥斯卡·摩根斯特恩合著的巨作《博弈论与经济行为》出版,标志着现代系统博弈理论的的初步形成。尽管对具有博弈性质的问题的研究可以追溯到 19世纪甚至更早。例如,1838年古诺(Cournot)简单双寡头垄断博弈;1883年伯特兰和1925年艾奇沃奇思研究了两个寡头的产量与价格垄断;2000多年前中国著名军事家孙武的后代孙膑利用博弈论方法帮助田忌赛马取胜等等都属于早期博弈论的萌芽,其特点是零星的,片断的研究,带有很大的偶然性,很不系统。冯·诺依曼和摩根斯特恩的《博弈论与经济行为》一书中提出的标准型、扩展型和合作型博弈模型解的概念和分析方法,奠定了这门学科的理论基础。合作型博弈在20世纪50年代达到了巅峰期。然而,诺依曼的博弈论的局限性也日益暴露出来,由于它过于抽象,使应用范围受到很大限制,在很长时间里,人们对博弈论的研究知之甚少,只是少数数学家的专利,所以,影响力很有限。正是在这个时候,非合作博弈———“纳什均衡”应运而生了,它标志着博弈论的新时代的开始!纳什不是一个按部就班的学生,他经常旷课。据他的同学们回忆,他们根本想不起来曾经什么时候和纳什一起完完整整地上过一门必修课,但纳什争辩说,至少上过斯蒂恩罗德的代数拓扑学。斯蒂恩罗德恰恰是这门学科的创立者,可是,没上几次课,纳什就认定这门课不符合他的口味。于是,又走人了。然而,纳什毕竟是一位英才天纵的非凡人物,他广泛涉猎数学王国的每一个分支,如拓扑学、代数几何学、逻辑学、博弈论等等,深深地为之着迷。纳什经常显示出他与众不同的自信和自负,充满咄咄逼人的学术野心。1950年整个夏天纳什都忙于应付紧张的考试,他的博弈论研究工作被迫中断,他感到这是莫大的浪费。殊不知这种暂时的“放弃”,使原来模糊、杂乱和无绪的若干念头,在潜意识的持续思考下,逐步形成一条清晰的脉络,突然来了灵感!这一年的10月,他骤感才思潮涌,梦笔生花。其中一个最耀眼的亮点就是日后被称之为“纳什均衡”的非合作博弈均衡的概念。纳什的主要学术贡献体现在1950年和1951年的两篇论文之中(包括一篇博士论文)。1950年他才把自己的研究成果写成题为“非合作博弈”的长篇博士论文,1950年11月刊登在美国全国科学院每月公报上,立即引起轰动。说起来这全靠师兄戴维·盖尔之功,就在遭到冯·诺依曼贬低几天之后,他遇到盖尔,告诉他自己已经将冯·诺依曼的“最小最大原理”(minimax solution)推到非合作博弈领域,找到了普遍化的方法和均衡点。盖尔听得很认真,他终于意识到纳什的思路比冯·诺伊曼的合作博弈的理论更能反映现实的情况,而对其严密优美的数学证明极为赞叹。盖尔建议他马上整理出来发表,以免被别人捷足先登。纳什这个初出茅庐的小子,根本不知道竞争的险恶,从未想过要这么做。结果还是盖尔充当了他的“经纪人”,代为起草致科学院的短信,系主任列夫谢茨则亲自将文稿递交给科学院。纳什写的文章不多,就那么几篇,但已经足够了,因为都是精品中的精品。这一点也是值得我们深思的。国内提一个教授,要求在“核心的刊物”上发表多少篇文章。按照这个标准可能纳什还不一定够资格。
1996年诺贝尔经济学奖得主莫尔里斯当牛津大学艾奇沃思经济学讲座教授时也没有发表过什么文章,特殊的人才,必须有特殊的选拔办法。
纳什在上大学时就开始从事纯数学的博弈论研究,1948年进入普林斯顿大学后更是如鱼得水。20岁出头已成为闻名世界的数学家。特别是在经济博弈论领域,他做出了划时代的贡献,是继冯·诺依曼之后最伟大的博弈论大师之一。他提出的著名的纳什均衡的概念在非合作博弈理论中起着核心的作用。后续的研究者对博弈论的贡献,都是建立在这一概念之上的。由于纳什均衡的提出和不断完善为博弈论广泛应用于经济学、管理学、社会学、政治学、军事科学等领域奠定了坚实的理论基础。
http://ke..com/view/18930.html?wtp=tt
② 含泪跪求!!!关于博弈论的书
1)刚开始先学经济博弈论吧~~
2)中文的博弈论比较系统的书其实不多回,复旦大学谢识予答的《经济博弈论》是比较常用的教材,初学还不错。(382页,不厚,真能1天3小时,一周就能搞定啦);《博弈论的诡计》也是当前比较流行的中文著作吧~~
另外,推荐网络文库,里面有很多免费课件、电子书之类的。支持它壮大!
3)数学专业学的博弈论数学推理解释专业一点吧,但是因为博弈论还不是很成熟,应用部分的经典例子其实也差不多~~
4)博弈论学界重量级人物有:冯·诺依曼、摩根斯特、纳什、泽尔腾、还萨尼。他们的著作和思想可以多看看~~~
③ 博弈论是什么博弈论的思想是什么
博弈论又被称为对策论(Game Theory),它是现代数学的一个新分支,也是运筹学的一个重要组成内容。在《博弈圣经》中写到:博弈论是二人在平等的对局中各自利用对方的策略变换自己的对抗策略,达到取胜的意义。按照2005年因对博弈论的贡献而获得诺贝尔经济学奖的Robert Aumann教授的说法,博弈论就是研究互动决策的理论。所谓互动决策,即各行动方(即局中人[player])的决策是相互影响的,每个人在决策的时候必须将他人的决策纳入自己的决策考虑之中,当然也需要把别人对于自己的考虑也要纳入考虑之中……在如此迭代考虑情形进行决策,选择最有利于自己的战略(strategy)。
博弈论的应用领域十分广泛,在经济学、政治科学(国内的以及国际的)、军事战略问题、进化生物学以及当代的计算机科学等领域都已成为重要的研究和分析工具。此外,它还与会计学、统计学、数学基础、社会心理学以及诸如认识论与伦理学等哲学分支有重要联系。
博弈要素:
1.决策人:在博弈中率先作出决策的一方,这一方往往依据自身的感受、经验和表面状态优先采取一种有方向性的行动。(博弈圣经)
2.对抗者:在博弈二人对局中行动滞后的那个人,与决策人要作出基本反面的决定,并且他的动作是滞后的、默认的、被动的,但最终占优。他的策略可能依赖于决策人劣势的策略选择,占去空间特性,因此对抗是唯一占优的方式,实为领导人的阶段性终结行为。(博弈圣经)
3.生物亲序:所有生物在恶劣、未知的环境中都有寻找规律和有序的本能。在博弈中指参与者有从混乱的环境中等待、寻找有序的亲近行为。(博弈圣经)
4.局中人(players):在一场竞赛或博弈中,每一个有决策权的参与者成为一个局中人。只有两个局中人的博弈现象称为“两人博弈”,而多于两个局中人的博弈称为 “多人博弈”。
5.策略(strategiges):一局博弈中,每个局中人都有选择实际可行的完整的行动方案,即方案不是某阶段的行动方案,而是指导整个行动的一个方案,一个局中人的一个可行的自始至终全局筹划的一个行动方案,称为这个局中人的一个策略。如果在一个博弈中局中人都总共有有限个策略,则称为“有限博弈”,否则称为“无限博弈”。
6.得失(payoffs):一局博弈结局时的结果称为得失。每个局中人在一局博弈结束时的得失,不仅与该局中人自身所选择的策略有关,而且与全局中人所取定的一组策略有关。所以,一局博弈结束时每个局中人的“得失”是全体局中人所取定的一组策略的函数,通常称为支付(payoff)函数。
7.次序(orders):各博弈方的决策有先后之分,且一个博弈方要作不止一次的决策选择,就出现了次序问题;其他要素相同次序不同,博弈就不同。
8.博弈涉及到均衡:均衡是平衡的意思,在经济学中,均衡意即相关量处于稳定值。在供求关系中,某一商品市场如果在某一价格下,想以此价格买此商品的人均能买到,而想卖的人均能卖出,此时我们就说,该商品的供求达到了均衡。所谓纳什均衡,它是一稳定的博弈结果。
纳什均衡(Nash Equilibrium):在一策略组合中,所有的参与者面临这样一种情况,当其他人不改变策略时,他此时的策略是最好的。也就是说,此时如果他改变策略他的支付将会降低。在纳什均衡点上,每一个理性的参与者都不会有单独改变策略的冲动。纳什均衡点存在性证明的前提是“博弈均衡偶”概念的提出。所谓“均衡偶”是在二人零和博弈中,当局中人A采取其最优策略a*,局中人B也采取其最优策略b*,如果局中人仍采取b*,而局中人A却采取另一种策略a,那么局中人A的支付不会超过他采取原来的策略a*的支付。这一结果对局中人B亦是如此。
这样,“均衡偶”的明确定义为:一对策略a*(属于策略集A)和策略b*(属于策略集B)称之为均衡偶,对任一策略a(属于策略集A)和策略b(属于策略集B),总有:偶对(a, b*)≤偶对(a*,b*)≤偶对(a*,b)。
对于非零和博弈也有如下定义:一对策略a*(属于策略集A)和策略b*(属于策略集B)称为非零和博弈的均衡偶,对任一策略a(属于策略集A)和策略 b(属于策略集B),总有:对局中人A的偶对(a, b*) ≤偶对(a*,b*);对局中人B的偶对(a*,b)≤偶对(a*,b*)。
有了上述定义,就立即得到纳什定理:
任何具有有限纯策略的二人博弈至少有一个均衡偶。这一均衡偶就称为纳什均衡点。
纳什定理的严格证明要用到不动点理论,不动点理论是经济均衡研究的主要工具。通俗地说,寻找均衡点的存在性等价于找到博弈的不动点。
纳什均衡点概念提供了一种非常重要的分析手段,使博弈论研究可以在一个博弈结构里寻找比较有意义的结果。
但纳什均衡点定义只局限于任何局中人不想单方面变换策略,而忽视了其他局中人改变策略的可能性,因此,在很多情况下,纳什均衡点的结论缺乏说服力,研究者们形象地称之为“天真可爱的纳什均衡点”。
塞尔顿(R·Selten)在多个均衡中剔除一些按照一定规则不合理的均衡点,从而形成了两个均衡的精炼概念:子博弈完全均衡和颤抖的手完美均衡。弈论的研究方法和其他许多利用数学工具研究社会经济现象的学科一样,都是从复杂的现象中抽象出基本的元素,对这些元素构成的数学模型进行分析,而后逐步引入对其形势产影响的其他因素,从而分析其结果。
基于不同抽象水平,形成三种博弈表述方式,标准型、扩展型和特征函数型利用这三种表述形式,可以研究形形色色的问题。因此,它被称为“社会科学的数学”从理论上讲,博弈论是研究理性的行动者相互作用的形式理论,而实际上正深入到经济学、政治学、社会学等等,被各门社会科学所应用。
博弈论是指某个个人或是组织,面对一定的环境条件,在一定的规则约束下,依靠所掌握的信息,从各自选择的行为或是策略进行选择并加以实施,并从各自取得相应结果或收益的过程,在经济学上博弈论是个非常重要的理论概念。
什么是博弈论?古语有云,世事如棋。生活中每个人如同棋手,其每一个行为如同在一张看不见的棋盘上布一个子,精明慎重的棋手们相互揣摩、相互牵制,人人争赢,下出诸多精彩纷呈、变化多端的棋局。博弈论是研究棋手们 “出棋” 着数中理性化、逻辑化的部分,并将其系统化为一门科学。换句话说,就是研究个体如何在错综复杂的相互影响中得出最合理的策略。事实上,博弈论正是衍生于古老的游戏或曰博弈如象棋、扑克等。数学家们将具体的问题抽象化,通过建立自完备的逻辑框架、体系研究其规律及变化。这可不是件容易的事情,以最简单的二人对弈为例,稍想一下便知此中大有玄妙:若假设双方都精确地记得自己和对手的每一步棋且都是最“理性” 的棋手,甲出子的时候,为了赢棋,得仔细考虑乙的想法,而乙出子时也得考虑甲的想法,所以甲还得想到乙在想他的想法,乙当然也知道甲想到了他在想甲的想法…
面对如许重重迷雾,博弈论怎样着手分析解决问题,怎样对作为现实归纳的抽象数学问题求出最优解、从而为在理论上指导实践提供可能性呢?现代博弈理论由匈牙利大数学家冯·诺伊曼于20世纪20年代开始创立,1944年他与经济学家奥斯卡·摩根斯特恩合作出版的巨著《博弈论与经济行为》,标志着现代系统博弈理论的初步形成。对于非合作、纯竞争型博弈,诺伊曼所解决的只有二人零和博弈--好比两个人下棋、或是打乒乓球,一个人赢一着则另一个人必输一着,净获利为零。在这里抽象化后的博弈问题是,已知参与者集合(两方) ,策略集合(所有棋着) ,和盈利集合(赢子输子) ,能否且如何找到一个理论上的“解” 或“平衡” ,也就是对参与双方来说都最“合理” 、最优的具体策略?怎样才是“合理” ?应用传统决定论中的“最小最大” 准则,即博弈的每一方都假设对方的所有功略的根本目的是使自己最大程度地失利,并据此最优化自己的对策,诺伊曼从数学上证明,通过一定的线性运算,对于每一个二人零和博弈,都能够找到一个“最小最大解” 。通过一定的线性运算,竞争双方以概率分布的形式随机使用某套最优策略中的各个步骤,就可以最终达到彼此盈利最大且相当。当然,其隐含的意义在于,这套最优策略并不依赖于对手在博弈中的操作。用通俗的话说,这个著名的最小最大定理所体现的基本“理性” 思想是“抱最好的希望,做最坏的打算” 。
博弈论--这是一个热得烫手的概念。它不仅仅存在于数学的运筹学中,也正在经济学中占据越来越重要的地位(近几年诺贝尔经济学奖就频频授予博弈论研究者),但如果你认为博弈论的应用领域仅限于此的话,那你就大错了。实际上,博弈论甚至在我们的工作和生活中无处不在!在工作中,你在和上司博弈,也在和下属博弈,你也同样会跟其他相关部门人员博弈;而要开展业务,你更是在和你的客户以及竞争对手博弈。在生活中,博弈仍然无处不在。博弈论代表着一种全新的分析方法和全新的思想。
诺贝尔经济学奖获得者包罗·萨缪尔逊如是说:
要想在现代社会做个有价值的人,你就必须对博弈论有个大致的了解。
也可以这样说,要相赢得生意,不可不学博弈论;要想赢得生活,同样不可不学博弈论。
博弈论很深奥吗?通过本教材你将发现深奥的博弈论原来也可以这么生动、通俗和易懂。大量的案例、平实的语言,将帮助你轻松掌握博弈论这个今天最时髦的工具。
《博弈圣经》中也说到:21世纪,应站在博弈论的前沿。尽管博弈经济学家很少,但其获诺贝尔奖的比例最高。最能震动人类情感的是博弈,对未来最有影响力的还是博弈。评论一个人和一个国家的穷富,就看他分享博弈正理的多少。
可见博弈之重要。
经济学中的“智猪博弈”(Pigs’payoffs)
这个例子讲的是:猪圈里有两头猪,一头大猪,一头小猪。猪圈的一边有个踏板,每踩一下踏板,在远离踏板的猪圈的另一边的投食口就会落下少量的食物。如果有一只猪去踩踏板,另一只猪就有机会抢先吃到另一边落下的食物。当小猪踩动踏板时,大猪会在小猪跑到食槽之前刚好吃光所有的食物;若是大猪踩动了踏板,则还有机会在小猪吃完落下的食物之前跑到食槽,争吃到另一半残羹。
那么,两只猪各会采取什么策略?答案是:小猪将选择“搭便车”策略,也就是舒舒服服地等在食槽边;而大猪则为一点残羹不知疲倦地奔忙于踏板和食槽之间。
原因何在?因为,小猪踩踏板将一无所获,不踩踏板反而能吃上食物。对小猪而言,无论大猪是否踩动踏板,不踩踏板总是好的选择。反观大猪,已明知小猪是不会去踩动踏板的,自己亲自去踩踏板总比不踩强吧,所以只好亲力亲为了。
“小猪躺着大猪跑”的现象是由于故事中的游戏规则所导致的。规则的核心指标是:每次落下的食物数量和踏板与投食口之间的距离。
如果改变一下核心指标,猪圈里还会出现同样的“小猪躺着大猪跑”的景象吗?试试看。
改变方案一:减量方案。投食仅原来的一半分量。结果是小猪大猪都不去踩踏板了。小猪去踩,大猪将会把食物吃完;大猪去踩,小猪将也会把食物吃完。谁去踩踏板,就意味着为对方贡献食物,所以谁也不会有踩踏板的动力了。
如果目的是想让猪们去多踩踏板,这个游戏规则的设计显然是失败的。
改变方案二:增量方案。投食为原来的一倍分量。结果是小猪、大猪都会去踩踏板。谁想吃,谁就会去踩踏板。反正对方不会一次把食物吃完。小猪和大猪相当于生活在物质相对丰富的“共产主义”社会,所以竞争意识却不会很强。
对于游戏规则的设计者来说,这个规则的成本相当高(每次提供双份的食物);而且因为竞争不强烈,想让猪们去多踩踏板的效果并不好。
改变方案三:减量加移位方案。投食仅原来的一半分量,但同时将投食口移到踏板附近。结果呢,小猪和大猪都在拼命地抢着踩踏板。等待者不得食,而多劳者多得。每次的收获刚好消费完。
对于游戏设计者,这是一个最好的方案。成本不高,但收获最大。
原版的“智猪博弈”故事给了竞争中的弱者(小猪)以等待为最佳策略的启发。但是对于社会而言,因为小猪未能参与竞争,小猪搭便车时的社会资源配置的并不是最佳状态。为使资源最有效配置,规则的设计者是不愿看见有人搭便车的,政府如此,公司的老板也是如此。而能否完全杜绝“搭便车”现象,就要看游戏规则的核心指标设置是否合适了。
比如,公司的激励制度设计,奖励力度太大,又是持股,又是期权,公司职员个个都成了百万富翁,成本高不说,员工的积极性并不一定很高。这相当于“智猪博弈”增量方案所描述的情形。但是如果奖励力度不大,而且见者有份(不劳动的“小猪”也有),一度十分努力的大猪也不会有动力了----就象“智猪博弈”减量方案一所描述的情形。最好的激励机制设计就象改变方案三----减量加移位的办法,奖励并非人人有份,而是直接针对个人(如业务按比例提成),既节约了成本(对公司而言),又消除了“搭便车”现象,能实现有效的激励。
许多人并未读过“智猪博弈”的故事,但是却在自觉地使用小猪的策略。股市上等待庄家抬轿的散户;等待产业市场中出现具有赢利能力新产品、继而大举仿制牟取暴利的游资;公司里不创造效益但分享成果的人,等等。因此,对于制订各种经济管理的游戏规则的人,必须深谙“智猪博弈”指标改变的个中道理。
[编辑本段]纳什博弈论的原理与应用
1950年和1951年纳什的两篇关于非合作博弈论的重要论文,彻底改变了人们对竞争和市场的看法。他证明了非合作博弈及其均衡解,并证明了均衡解的存在性,即著名的纳什均衡。从而揭示了博弈均衡与经济均衡的内在联系。纳什的研究奠定了现代非合作博弈论的基石,后来的博弈论研究基本上都沿着这条主线展开的。然而,纳什天才的发现却遭到冯·诺依曼的断然否定,在此之前他还受到爱因斯坦的冷遇。但是骨子里挑战权威、藐视权威的本性,使纳什坚持了自己的观点,终成一代大师。要不是30多年的严重精神病折磨,恐怕他早已站在诺贝尔奖的领奖台上了,而且也绝不会与其他人分享这一殊荣。
纳什是一个非常天才的数学家,他的主要贡献是1950至1951年在普林斯顿读博士学位时做出的。然而,他的天才发现———非合作博弈的均衡,即“纳什均衡”并不是一帆风顺的。
1948年纳什到普林斯顿大学读数学系的博士。那一年他还不到20岁。当时普林斯顿可谓人杰地灵,大师如云。爱因斯坦、冯·诺依曼、列夫谢茨(数学系主任)、阿尔伯特·塔克、阿伦佐·切奇、哈罗德·库恩、诺尔曼·斯蒂恩罗德、埃尔夫·福克斯……等全都在这里。博弈论主要是由冯·诺依曼(1903—1957)创所立的。他是一位出生于匈牙利的天才的数学家。他不仅创立了经济博弈论,而且提出了计算机的基本原理。早在20世纪初,塞梅鲁(Zermelo)、鲍罗(Borel)和冯·诺伊曼已经开始研究博弈的准确的数学表达,直到1939年,冯·诺依曼遇到经济学家奥斯卡·摩根斯特恩(Oskar Morgenstern),并与其合作才使博弈论进入经济学的广阔领域。
1944年他与奥斯卡·摩根斯特恩合著的巨作《博弈论与经济行为》出版,标志着现代系统博弈理论的的初步形成。尽管对具有博弈性质的问题的研究可以追溯到19世纪甚至更早。例如,1838年古诺(Cournot)简单双寡头垄断博弈;1883年伯特兰和1925年艾奇沃奇思研究了两个寡头的产量与价格垄断;2000多年前中国著名军事家孙武的后代孙膑利用博弈论方法帮助田忌赛马取胜等等都属于早期博弈论的萌芽,其特点是零星的,片断的研究,带有很大的偶然性,很不系统。冯·诺依曼和摩根斯特恩的《博弈论与经济行为》一书中提出的标准型、扩展型和合作型博弈模型解的概念和分析方法,奠定了这门学科的理论基础。合作型博弈在20世纪50年代达到了巅峰期。然而,诺依曼的博弈论的局限性也日益暴露出来,由于它过于抽象,使应用范围受到很大限制,在很长时间里,人们对博弈论的研究知之甚少,只是少数数学家的专利,所以,影响力很有限。正是在这个时候,非合作博弈———“纳什均衡”应运而生了,它标志着博弈论的新时代的开始!纳什不是一个按部就班的学生,他经常旷课。据他的同学们回忆,他们根本想不起来曾经什么时候和纳什一起完完整整地上过一门必修课,但纳什争辩说,至少上过斯蒂恩罗德的代数拓扑学。斯蒂恩罗德恰恰是这门学科的创立者,可是,没上几次课,纳什就认定这门课不符合他的口味。于是,又走人了。然而,纳什毕竟是一位英才天纵的非凡人物,他广泛涉猎数学王国的每一个分支,如拓扑学、代数几何学、逻辑学、博弈论等等,深深地为之着迷。纳什经常显示出他与众不同的自信和自负,充满咄咄逼人的学术野心。1950年整个夏天纳什都忙于应付紧张的考试,他的博弈论研究工作被迫中断,他感到这是莫大的浪费。殊不知这种暂时的“放弃”,使原来模糊、杂乱和无绪的若干念头,在潜意识的持续思考下,逐步形成一条清晰的脉络,突然来了灵感!这一年的10月,他骤感才思潮涌,梦笔生花。其中一个最耀眼的亮点就是日后被称之为“纳什均衡”的非合作博弈均衡的概念。纳什的主要学术贡献体现在1950年和1951年的两篇论文之中(包括一篇博士论文)。1950年他才把自己的研究成果写成题为“非合作博弈”的长篇博士论文,1950年11月刊登在美国全国科学院每月公报上,立即引起轰动。说起来这全靠师兄戴维·盖尔之功,就在遭到冯·诺依曼贬低几天之后,他遇到盖尔,告诉他自己已经将冯·诺依曼的“最小最大原理”(minimax solution)推到非合作博弈领域,找到了普遍化的方法和均衡点。盖尔听得很认真,他终于意识到纳什的思路比冯·诺伊曼的合作博弈的理论更能反映现实的情况,而对其严密优美的数学证明极为赞叹。盖尔建议他马上整理出来发表,以免被别人捷足先登。纳什这个初出茅庐的小子,根本不知道竞争的险恶,从未想过要这么做。结果还是盖尔充当了他的“经纪人”,代为起草致科学院的短信,系主任列夫谢茨则亲自将文稿递交给科学院。纳什写的文章不多,就那么几篇,但已经足够了,因为都是精品中的精品。这一点也是值得我们深思的。国内提一个教授,要求在“核心的刊物”上发表多少篇文章。按照这个标准可能纳什还不一定够资格。
1996年诺贝尔经济学奖得主莫尔里斯当牛津大学艾奇沃思经济学讲座教授时也没有发表过什么文章,特殊的人才,必须有特殊的选拔办法。
纳什在上大学时就开始从事纯数学的博弈论研究,1948年进入普林斯顿大学后更是如鱼得水。20岁出头已成为闻名世界的数学家。特别是在经济博弈论领域,他做出了划时代的贡献,是继冯·诺依曼之后最伟大的博弈论大师之一。他提出的著名的纳什均衡的概念在非合作博弈理论中起着核心的作用。后续的研究者对博弈论的贡献,都是建立在这一概念之上的。由于纳什均衡的提出和不断完善为博弈论广泛应用于经济学、管理学、社会学、政治学、军事科学等领域奠定了坚实的理论基础。
④ 求一本博弈论最经典著作
国内的博弈论教材不可能是最经典的,因为博弈论本来就是西方的东西.要看就看国专外的
2、3楼的书都是不错的选属择,但是至于2楼说的《博弈论与经济行为》,冯·诺依曼的,就不用看了 那时连纳什均衡都没有 还是看一些近期的吧
⑤ 谁能讲讲博弈论
博弈论(game theory),又称对策论。
博弈论与游戏有着密切的关系。博弈论,最早是从游戏开回始的,如:象棋,桥牌,“石头答,剪刀,布”等游戏。人们试图研究,在游戏中如何利用智慧和机智赢得对方,其中又哪些规律,简言之,它研究在竞争环境下,如何决策。
应用的领域:经济领域中的生产管理,价格竞争,贸易谈判;企业管理领域中的薪酬设计,劳资纠纷;政治领域中的谈判策略,选举策略博弈论与游戏有着密切的关系。
⑥ 求高人解答这些博弈论与信息经济学的答案,急,在线等答案!!!
博弈论
⑦ 博弈论博弈论的主要研究内容
来源:美国资讯网;博弈圣经著作人对纳什的嘲讽
博弈圣经著作人的经典名句;0、1、二维平均,称平衡,0、1、2、三维平均,称均衡。(在0、1、二维记录的系统中,有一个极小极大定理,不存在平均律,就是不存在均衡。在纳什的语文学中,就没有出现过一次0、1、2、三维均衡的概念,纳什均衡哪里来。)
博弈圣经著作人的经典名句;二维平衡是指生物的竞争行为,三维均衡是指自然的优劣特性。
博弈圣经著作人的经典名句;揭开纳什均衡的画皮,露出真相。【如果纳什均衡是以纳什的名字、命名的一个博弈论术语;假如我把纳什名字去掉、只剩下均衡一词、均衡也就是纯净的博弈论术语;倘若所有博弈论的文章中、都把纳什名字去掉只剩下均衡;再读一篇篇博弈论文章、也都是围绕着均衡一词展开的叙述;发现通篇文章逻辑不通、词意变异、不知所云;只要是属于纳什均衡的理论文章、去掉纳什名字之后、纳什的鬼魅就出现了;通篇文章,捕风捉影、张冠李戴、以讹传讹,添油加醋又像是疯言疯语,更不能被常人所理解。】
博弈圣经著作人的经典名句;纳什-是纳什,均衡-是均衡。
博弈圣经著作人的经典名句;“纳什均衡” 之所以鬼魅,纳什自己不知道什么是纳什均衡,追随他的门外汉,反而、假装、都懂得什么是纳什均衡。“纳什均衡”把所有的门徒变成了精神病、变成了不懂装懂;任何人谈到纳什均衡,就像掉进了魔鬼坑,开口就是自问自答、自说自话、反复无常、自己感到莫名其妙时,还会自圆其说。
博弈圣经著作人的经典名句;如果说纳什均衡是一份学术遗产,那就是学术中、独一份的滑稽遗产,他的滑稽级别、足够七星级。纳什均衡是什么,纳什自己不知道,中国的傻吊全都知道……。
博弈圣经著作人的经典名句;“纳什均衡成了中国的一个宗教,追随他的门徒;有无知的青年、有无畏的傻吊、还有无耻的教授。”
博弈圣经著作人的经典名句;中国人醒来吧,应该扪心自问;“纳什均衡”理论在哪里?中国人从“纳什均衡”中、学到了什么?
博弈圣经著作人的经典名句;【“纳什均衡”一词,像是宗教的“圣言”,追随它的门徒,各自像精神病人一样、在纳什均衡中寻找理由,都想找到合理的理由解释“纳什均衡”,其结果把纳什均衡变成了博弈宗教、纳什变成了教主,门徒解释纳什均衡的疯言疯语,其实就是胡说八道。】
博弈圣经著作人的经典名句;如果中国的教授抄袭“纳什均衡”作为标题,捕风捉影、以讹传讹的炒作,是为了编书、售书、挣钱,假如读者想通过“纳什均衡”想占优、想赢钱,就应该先查查纳什50年以来讲过一句“赢钱”吗,他赢过一次吗?【纳什既然是个数学家,他就应该把占优策略给出一个数字量化的数学公式、或者是一个数学模板,让所有的人成功模仿。博弈圣经著作人的经典名句;科学家的博弈功能,是让其傻吊与天才同等水平。显然,人们等到纳什车祸身亡全无结果,历史证明他就没有所谓的占优策略。“纳什均衡”它会是什么?它像UFO一样诡异、令人百思不解。“纳什均衡”的鬼魅让人想入非非,层出不穷的解释让人匪夷所思。】
博弈圣经著作人的经典名句;电影《美丽心灵》用构思、杜撰的艺术形式、编造了纳什戏剧性的一生,“纳什均衡”像西方宗教的“经文”一样,演变成了博弈宗教传奇。诺贝尔经济学奖意外地、砸到纳什头上的那种巧合,给了纳什幸运的一生、羞羞答答的一生、不愿见人的一生、学术欺骗的一生、也是他难堪的一生。
博弈圣经著作人的经典名句;纳什均衡是半个世纪前,一个“驴头不对马嘴”的概念,纳什之所以一直沉默,是因为他没法说,他不敢说,他到死都不会说。【来源:美国资讯网;麻省理工福布斯纳什-著名大学名人-正文-时间:2013-12-02,从博弈圣经著作人对纳什的嘲讽,到纳什2015年5月23号出车祸死亡,中间有一年半时间他没有作出回应。】
博弈圣经著作人的经典名句;纳什均衡,是黑暗中的教唆、无知中的误判、猎奇中的杂耍。
博弈圣经著作人的经典名句;几个(因为博弈论)获得诺贝尔经济学奖的得主、管理股票的炒股公司,因亏空、也关门大吉了。
瑞典皇家科学院、诺贝尔经济学奖委员会委员,斯塔尔说;纳什均衡是一个博弈取胜的幻想,他自己也不知道怎么均衡、不知道怎么单方占优、不知道怎么取胜。因此,纳什在世期间不会向世人做出博弈如何取胜的解释,所以他一直保持沉默。斯塔尔还说;我们今天既然把纳什均衡带到公众面前,可以断定,未来一定会出现博弈的取胜理论,大家担心纳什均衡可能一败涂地,若干年后将变成一大丑闻。
来源:美国资讯网;麻省理工福布斯纳什-著名大学名人-正文-时间:2013-12-02
博弈圣经著作人对纳什的嘲讽
......。
纳什均衡以讹传讹 是什么玩意儿
博弈论理论 是停滞不前的理论
博弈圣经著作人笑谈博弈论,人们在寻找一粒爆香的黄豆时,还不如老鼠能选择最近的路程。
《博弈圣经》中《人类未知的蓝色档案》一文给出了博弈论的定义:“我们把动物利用大自然移动的瘾魂,在决策人期待的空间里,形成三维均衡的语文学理论,称为博弈论。”
博弈圣经著作人说;博弈论是青年人的毒品,是无知者的兴奋剂,是沉默者的摇头丸。
博弈圣经著作人对博弈、宗教、伟人,有过美妙的阐述
博弈圣经著作人说;博弈是人与宇宙的宗教。博弈的使命是探索自然界里和思维世界里,所显示出来的崇高、庄严、不可思议的秩序。人们对宇宙,实体、知识、未知的神秘,以及对个体,性质、经验、已知的恐惧——产生了宗教。人们认识到,有些为我们所不能洞察的东西存在其中,感觉到有一种最原始的形式、最深奥的理性、最灿烂的壮美、所产生的博弈情感,构成了真正的宗教感情。没有宗教、没有信仰、没有博弈感情,就不会出现时代伟人。
博弈论就是张冠李戴捕风捉影以讹传讹
【典故】《博弈圣经》讽刺博弈论的最高博弈水平;
有人问博弈圣经著作人,什么是博弈论。
他回答说;博弈论就是,一问、二答、三无知。
也就是说;问者无知、回答者无知、听者更无知。
有人追问,到目前为止,那么多博弈论图书,那么多作者,他们的最高博弈水平是什么?博弈圣经著作人一听就笑了;目前他们的最高博弈水平,就是想卖给你一本书,赢你一本书钱。
博弈圣经著作人通俗的谈菜鸟与金鸟
一个人想变得伟大,从一个菜鸟变成一个金鸟,就要利用国家实体特性造个金鸟笼。日后,就可以在媒体的报道中、绘声绘色地描述那个金鸟笼;他是某某大学院校、某某著名教授、某某首席科学家、某某诺贝尔奖得主、甚至某某政府官员,他就自然的钻进了金鸟笼。
博弈论理论,是停滞不前的理论,它是太过于急躁、太过于草率的理论。由于博弈论新奇、古怪、原始,一个“囚徒困境”的三维谜团像似神话,人们又错误的认为博弈论能够取胜,因此受到了人们盲目的吹捧和疯狂的参与。人们把博弈取胜的欲望作为动力,一个人有了欲望,就要有实现欲望的对象和博弈对局的背景,加上自己行为的结果,才能取得想要的东西。博弈竞争的欲望在远古就出现了。欲望的天性就是进行交往,建立行为二特性对局,就是博弈的合作。
《博弈圣经》赢的定义;赢不是大小、不是多少、不是均衡平衡、不是战略战术,而是在未来国正论的0、1、2,三维随机状态中,一粒期望的粒子优先达成。
赢也不是福,输也不是罪,输赢与均衡属于第三空地论的内容。
但明眼的人都能看得出,所谓那些自称的博弈专家抄来的无效理论、编成的一本本博弈论,就是张冠李戴、捕风捉影、“以讹传讹”,不管他从外国哪个地方抄来的,不管他抄了多少、编了多少本书、多少篇文章,究其低劣的学术品质,他仍然是一个菜鸟。
假如博弈论大师,走出那个金鸟笼,再靠讲课赚大钱,靠卖书赚小钱,靠博弈取胜策略赚不到一毛钱,他就是骗子,也许是一个罪犯。
更为讽刺的是,一本本博弈论著作,古老的内容千篇一律,里面没有几句精彩的话,没有几个经典的词,更没有定理、定律、定义和法则。至今一个个博弈论专家、矛盾论专家、概率论专家和外行知道得一样多。
以往经济学家为了降低风险,建议投资多元化,“不要把鸡蛋放在一个篮子里”,这种分散投资的经济思想,实在是经济学家对博弈取胜的无奈。《博弈圣经》在453节有一段风趣的表述:“我们根本不能完全理解大自然,或许人们不如老鼠在寻找食物时能选择最近的路程,那是大自然的拓扑几何图像的捷径。”
看看权威媒体上发表的理论文章,标题或者落款,都是什么什么单位(一个金鸟笼)、某某某人的大名(一个金鸟),即使有一个金鸟笼做背书、做包装,再看他那排列整齐错落有致的垃圾文章,如果只看外观不读内容,真像是一篇好文章,假如读者直接读内容,就会得出结论;文章的段子就是破碎的八卦、文章的内容就是拼凑的垃圾、金鸟笼就是忽悠人、金鸟其实就是一个菜鸟。中国新领导人形容过“笼子政治”的概念,因此中国就是一个笼子政治,金鸟笼里豢养了很多菜鸟,(政治菜鸟、经济菜鸟、学术菜鸟、司法菜鸟等)还有博弈论菜鸟。他们给中国百姓制造了无数的罪恶,中国百姓很善良,面对东方暴力机器,强权暴力,强权学术,都忍了……。【新领导人说;把权力关进笼子里,就是要把菜鸟的权力关进笼子里……。】
......。
《博弈圣经》给出的一部分定义
博弈圣经著作人说;每一个定义,都是一种逻辑语言,里面一致性的逻辑结构清晰可辨,只是人们以前从没真正看懂过。
《博弈圣经》纳什均衡的定义;纳什均衡,是黑暗中的教唆、无知中的误判、猎奇中的杂耍。
《博弈圣经》预测的定义;只有对每一个粒子相邻的未来状态、作出“大与小” 或‘多与少’的数字化判定,才称其为预测。
《博弈圣经》预言的定义;在一个事件或若干个事件未发生之前的一段时间内、对某一状态的结果,给出命题公理化的语言判定,才称其为预言。
《博弈圣经》政治的定义:我们把统治者模仿大自然博弈实体的秩序,外在于个体的一个整体结构,称为政治。
《博弈圣经》实体政治的定义;一人为粒子、二人为病毒、三人为“私湍”,它们共同组成了、像似实体政治的幻象。(二人为“一株寄生”病毒、三人为团伙“私湍” )
《博弈圣经》博弈实体政治的定义:我们把统治者模仿大自然博弈实体的秩序,外在于众多个体的平等性质、用文化私湍规矩与实体法则建立的笼子机构,称其为博弈实体政治。
《博弈圣经》博弈实体外交的定义;我们在国际外交关系中,平等、互信、包容、合作、共赢的精神,看成博弈实体外交。
《博弈圣经》外交的本质定义;外交不是交易、外交不是科学、外交的博弈结果,是徘徊在双方第三空地里的教训。
《博弈圣经》经济的定义;经济,就是不断地对0、1、2、三维状态的熵区分。
《博弈圣经》经济学的定义;经济学是输赢与均衡在公共空间里的概念。
《博弈圣经》经济学家的定义;经济学家就像赌场中一个个旁观输赢的马仔,围绕着博弈实体经济学的理论,凭个人临时的感觉,谈输、谈赢、谈均衡。
《博弈圣经》博弈实体经济学的定义;我们把博弈实体分离不变性学说,能容得下宏观经济实体与微观经济性质的语文学通论,看成博弈实体经济学。
《博弈圣经》实体经济的定义;我们把飞秒瞬间看到的天、地、人、事、物、情感的抽象概念融合在一起,在没有时间概念的场景中,形成的一个个金融特性的文化私湍,称其为实体经济。
《博弈圣经》虚拟经济的定义;犹如看魔术大师让一群狗争夺一块骨头,让众人押注的赌博游戏。
《博弈圣经》金融的定义;我们感受到的“金钱宗教”与‘金钱神学’,在天、地、人的情感中,用虚无的谎言进行类似于物品概念的买卖与交换,称其为金融。
《博弈圣经》金融经济的定义;我们在飞秒瞬间看到的天、地、人之间,人们用情感和虚无的谎言,进行类似于物品概念的买卖、流通、产生利息的货币交换,称其为金融经济。
《博弈圣经》金融犯罪的定义;我们把金融单位看成私湍,把私湍的实体与性质看成两重天;金融单位都有共同的理想、共同的欺骗;法定允许欺骗的欺骗、就是金融秩序;法定没允许欺骗的欺骗、就是金融犯罪。
《博弈圣经》经济神学的定义;博弈圣经著作人把股民炒股的神秘性,把股评家传教炒股的童话、人话、鬼话、神话,称其为荒唐的经济神学。
《博弈圣经》发明家的定义;发明家就是意见的推翻者、行为的摧残者。
《博弈圣经》哲学的定义;我们把文化中,借助国正论的语文学反映,定义为哲学。
《博弈圣经》科学的定义;文明的永恒、普适、唯一性,就是科学。
《博弈圣经》精神的定义;我们把主体的瘾魂,用气质、自由合成的唯一个性,看成精神。
《博弈圣经》科学精神的定义:用盲从在道德与博弈混合的概念里,执着于终极正理的唯一理性,看成是科学精神。
《博弈圣经》禅的定义;禅是第三空间里飘荡的一个“神化迈迈”。
《博弈圣经》文明的定义;文化进程里恩怨游戏的终结就是文明。
《博弈圣经》工作的定义;唯独用这一物改变成那一物的创作形式,才称其为工作,才能预知结果。
《博弈圣经》实体社会的定义;文化是政治的灵魂,政治是知识论的母体——博弈实体,它构成了实体社会。
《博弈圣经》文化的定义;我们把脱离大脑的感觉、思维、意识、观念,向主观、理性、真理,一级一级的私湍增量,称为文化。
《博弈圣经》内涵的定义:是主体里的瘾魂、气质、个性、精神被我们用情感的概念,创作出来的一切属性之和。
《博弈圣经》实体与性质的定义;博弈实体的可分不变性是博弈的性质,凡是与实体能分离的就是性质,凡是与实体同在的就是实体。
《博弈圣经》金融企业的定义;实体与性质的理论学说告诉我们,由政府批准(实体特性)的团伙欺骗行为、属于金融企业,由公安局找到未被政府批准(个体性质)的金融企业、属于经济咋骗团伙。
《博弈圣经》法律的定义:法律是一个实体特性与两个灵性的结合,是实体分离不变性学说。
《博弈圣经》司法均赢力的定义;法律加上情感的行为能在两个灵性的精神上产生双赢的感觉,我们把发展双赢的能力,称为——司法均赢力。
《博弈圣经》和谐司法精神的定义;实体法则对待当事人可以像股价一样随时间向空间膨胀,让当事人的精神上在司法中找到赢的感觉,这就是——和谐司法精神。
《博弈圣经》中国梦的定义;让人民体面的劳动、自由的创造、有尊严的活着、找到赢的感觉,这就是中国梦的标志性内容。
《博弈圣经》公正的定义;公正是非自愿与高兴之间的均赢。
《博弈圣经》幸福的定义;信任并自由地给予和欲意的收入,定义为幸福。
《博弈圣经》感情的定义;感情是依赖,是瘾魂驱动欲望过程中的殷勤创作。
《博弈圣经》爱的定义;我们把文化进程中被瘾魂驱动的欲望抛弃了自我之后,自由给予的真、善、美,定义为爱。
《博弈圣经》规律的定义;规律,就是前因后果,是前一个状态和后一个状态之间可复制的恒定关系。
《博弈圣经》草根的定义;草根二字,在中共媒体上经常出现,它是中国特色社会主义理论,也是东方暴徒对中国同胞的侮辱性言论。(中共土改,杀了资本家、杀了地、富、反、坏、右,中国已无贵族。也许自己刚刚从草根脱贫,自以为是贵族。西方贵族文化中有一个数字,3代以上……称为贵族)
《博弈圣经》智慧的定义;智慧就是文化进程中独创的执行力。
《博弈圣经》领导的定义;我们把指向‘私湍’或指向“实体”权威的信息,看成领导。
《博弈圣经》政党的定义;在一个司法独立的国家实体里,法定允许团伙冠名、发展、壮大成的帮派,称其为政党。
《博弈圣经》经典理论的定义;我们把历史选择的原创性、持久性、震撼性的理论,称之为经典理论。
《博弈圣经》战略的定义:战略是,寻找、连续、正理、科学的,文明实体。
《博弈圣经》战术的定义:战术是,达成、局部、真理、文明的,文化性质。
《博弈圣经》赢的定义;赢,不是大小、不是多少、不是均衡平衡、不是战略战术,而是在未来国正论的随机状态中,一粒期望的粒子优先达成。
《博弈圣经》纳什均衡的定义;纳什均衡,是黑暗中的教唆、无知中的误判、猎奇中的杂耍。
《博弈圣经》道德的定义;优先预测悲剧后、作出的忍让,是道德。
《博弈圣经》博弈的定义;优先预测胜利前、作出的竞争,是博弈。
《博弈圣经》博弈论的定义;我们把动物利用大自然移动的瘾魂,在决策人期待的空间里,形成三维均衡的语文学理论,称为博弈论。
《博弈圣经》决策的定义:意识,在没有引入空间之前,可以改变自己的状态,一旦被空间包围,就是决策。
《博弈圣经》进步的定义;就是你在传承的方向上播撒的欲望,反应在他者的思维中。
《博弈圣经》交流的定义;就是共同驱逐自我身中和它者身中之后建立的关系。
《博弈圣经》真理的定义;真理是一个观念、在个别情况下、判断中,现时的体验。
《博弈圣经》知识的定义;我把识别万物实体与性质的是与不是,定义为知识。
《博弈圣经》经验的定义;我们用矛盾论的辩证法进行的逻辑推理,区分出两个同性质——是到是的过程,称其为经验。
《博弈圣经》博弈知识论的定义;人们用国正论对实体与性质的区分,统称为博弈知识论。
《博弈圣经》博弈的基本原则定义;以人为本对应的唯物主义是一项博弈的基本原则。
《博弈圣经》互联网的定义;互联网是博弈实体,是地球上最美的三人之舞,他们是大众、实体、上帝,在博弈的第三空间里一起互动。
《博弈圣经》主义的定义;博弈圣经著作人悄悄的披露,主义就是个人主张。
《博弈圣经》革命斗争的定义;马克思主张的革命斗争,比动物目光的相互对视、表达的敌意,更加凶残。
《博弈圣经》矛盾论哲学的定义;后辈发现“人”是一粒病毒,一粒容易变异成矛盾论的二维病毒,专门寄生在实体、私湍、粒子体上,才能实现矛盾论哲学的扩充,当宿主遇到危机或困难时,矛盾论哲学将每一个人变成一个个复仇的怪物。
《博弈圣经》马克思主义的定义;人们把马克思的个人主张看成主题,在博弈的第三空地里,用欲望的集体狂欢,实验主体、主张、主题的意义,这就是马克思主义。
《博弈圣经》共产主义的定义;共产主义是马克思,在穷困、绝望时的幻像,为了摆脱清贫,任何一个人都会构造出来一套,掠夺、瓜分、共产的文化主张。
《博弈圣经》意识形态的定义;意识形态,像是一段无声流动的电影画面。
《博弈圣经》观念的定义;观念近似一张中心思想的相片、独立的存在文化进程中。
《博弈圣经》中心思想的定义;我们把感觉、思维、意识、观念,定义为中心思想。
……。
经济学世界十部经典著作
1、亚当斯密(英国)《国富论》。斯密此书是现代经济学的奠基之作,也是最伟大的经济学著作。他的劳动价值论,分工与专业化是经济效率之源的理论,“看不见的手”实体经济特性与性质自由主义理论,对后人博弈实体经济学的启发,对经济学的贡献堪比牛顿对物理学的贡献。
2、曹国正(新加坡)《博弈圣经》。独创了国正论、国正双赢理论和粒子行为论,是新加坡政府认定的一部,影响人类非物质文化的经济学高级学术著作,他的粒子基因的映射均衡和单方占优的博弈取胜理论,引起世界政治、经济、军事、外交、科学,自然哲学和博弈论界的极大关注。
3、大卫李嘉图(英国)《政治经济学与赋税原理》(第一卷)。李嘉图是伦敦交易所里成功的投机商人,又能在经济学理论领域做出不朽贡献。本书中他阐明的比较优势理论是现代自由贸易政策的理论基础。
4、马克思(德国)《资本论》。马克思的剩余价值理论,人人耳熟能详,就其概述的经济学现象对改变世界的力量之大,入选了最重要的经济学著作。
5、瓦尔拉斯(法国)《纯粹经济学要义》。现代经济学的主观价值(效用)论、边际革命、经济学数理化的转向通过本书而系统化,熊彼特曾赞誉此书为,经济学所取得的最高成就。
6、费雪(美国)《利息理论》。此书是迄今为止最伟大的关于资本理论的研究,在马克思发现剩余价值的地方,他看见的是放弃当前消费而承担未来的不确定性风险,所获得的报酬。
7、凯恩斯(英国)《就业、利息和货币通论》。被称为宏观经济学的奠基者,他最重要的理论认为,理性通过个人性质与性质的自由竞争会自然产生社会理性,就这一理论遭到了质疑和批判,其争议的主要原因,是来自社会的理性遇到国家政治干预时缺失了博弈实体政治的理论。
8、马歇尔(英国)《经济学原理》。马歇尔的最主要著作是1890年出版的《经济学原理》一书,被西方经济学界公认为划时代的著作,也是继《国富论》之后最伟大的经济学著作。该书所阐述的经济学说,在西方经济学中一直占据着支配地位。
9、萨缪尔逊(美国)《经济学》。把一本教科书选为最重要的经济学著作,也是发行量最大的经济学教科书,他在经济学知识的标准化、体系化方面做出的贡献,比当代任何一个人都多,就其入选最重要的经济学著作。
10、布坎南(美国)《同意的计算》。本书开创的“公共选择”理论,使宪政民主制可以用数理工具定量分析和定量运算,人们用他的理论研究政治与经济制度的形成,开辟了全新的路径。
来源:美闻网-美国资讯网-美国麻省理工学院
⑧ 博弈论是什么
博弈论主要研究公式化了的激励结构间的相互作用,是研究具有斗争或竞争性质现象的数学理论和方法。 博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。生物学家使用博弈理论来理解和预测进化论的某些结果。
博弈论已经成为经济学的标准分析工具之一。在金融学、证券学、生物学、经济学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。
(8)博弈论与信息经济学b扩展阅读:
1、一般认为,博弈主要可以分为合作博弈和非合作博弈。合作博弈和非合作博弈的区别在于相互发生作用的当事人之间有没有一个具有约束力的协议,如果有,就是合作博弈,如果没有,就是非合作博弈。
2、从行为的时间序列性,博弈论进一步分为静态博弈、动态博弈两类:静态博弈是指在博弈中,参与人同时选择或虽非同时选择但后行动者并不知道先行动者采取了什么具体行动;动态博弈是指在博弈中,参与人的行动有先后顺序,且后行动者能够观察到先行动者所选择的行动。
3、按照参与人对其他参与人的了解程度分为完全信息博弈和不完全信息博弈。完全博弈是指在博弈过程中,每一位参与人对其他参与人的特征、策略空间及收益函数有准确的信息。不完全信息博弈是指如果参与人对其他参与人的特征、策略空间及收益函数信息了解的不够准确、或者不是对所有参与人的特征、策略空间及收益函数都有准确的信息,在这种情况下进行的博弈就是不完全信息博弈。