导航:首页 > 经济学法 > 如何计量经济学论文

如何计量经济学论文

发布时间:2021-03-01 18:47:35

『壹』 计量经济学论文应该怎么写啊

wo ye bu

『贰』 如何写好一篇计量经济学论文,急~~~

首先 你要确定你要研究什么问题 订好你要写的论文的主题 最好是比较新颖的 题目回可以先不想 研究比较实际的答有意义的问题 最后能对某项你调查的东西提出建议
然后 你就要要针对你想要写的主题的论文开始收集数据了 相关的文献 以及 各种可以收集到数据的年鉴之类的 都需要 到时候再筛选也不迟的
然后 你就要确定写计量经济学论文的话 就要确定用什么模型
接下来 你要阅读各类文献了 浏览 细读 精读同时进行哦~
最后 写论文 格式的话 网络一下就知道了

『叁』 求计量经济学论文

计量经济学论文可以研究的问题有多种,期中比较简单的就是根据数据,建立方程,研究变量之间的关系,主要运用的工具就是计量经济学的初等知识和Eviews软件,思路、要求和注意事项我觉得这么说对你的帮助不大,所以给你一篇我的论文做参考,也许对你有帮助,如果你觉得看的不是很明白的话,可以再留言给我,我把什么思路等告诉你。
计量经济学
期末实验报告

实验名称:大中城市城镇居民人均消费支出与其影响因素的分析
姓 名:
学 号:
班 级: ()级统计学系()班
指导教师:
时 间:

(上面是论文封皮)

23个城市城镇居民人均消费支出与其影响因素的分析(题目)
一、 经济理论背景
近几年来,中国经济保持了快速发展势头,投资、出口、消费形成了拉动经济发展的“三架马车”,这已为各界所取得共识。通过建立计量模型,运用计量分析方法对影响城镇居民人均消费支出的各因素进行相关分析,找出其中关键影响因素,以为政策制定者提供一定参考,最终促使消费需求这架“马车”能成为引领中国经济健康、快速、持续发展的基石。
二、 有关人均消费支出及其影响因素的理论
我们主要从以下几个方面分析我国居民消费支出的影响因素:
①、居民未来支出预期上升,影响了居民即期消费的增长
居民的被动储蓄直接导致购买力的巨大分流, 从而减弱对消费品的即期需求,严重地影响了居民即期消费的增长,进而导致有效需求的不足,最终导致经济增长的乏力。90年代末期以来,我国的医疗、养老、失业保险、教育等一系列改革措施集中出台,原有的体制被打破,而新的体制尚未建立健全,因此目前的医疗、养老、失业保险、教育体制对居民个人支出的压力较大,而且基本上都是硬性支出,支出的不确定性也很大,导致居民目前对未来支出预期的上升。
②、商品供求结构性矛盾依然突出
从消费结构上看,我国消费品市场已发生了新的根本性变化:居民低层次消费已近饱和,而更高水平的消费又未达到。改革开放20多年来,城乡居民经过了一个中档耐用消费品的普及阶段后,目前老百姓的收入消费还不足以形成一个新的、以高档产品为内容的主导性消费热点,如轿车、住房等还远不能纳入大多数人的消费主流,居民现有的购买力不能形成推动主导消费品升级的动力。
③、物价总水平持续在低水平运行,通货紧缩的压力较大,不利于消费的增长
加入WTO之后,随着关税的降低和进口规模的扩大,国外产品对我国市场的冲击将进一步加大,国际价格紧缩对国内价格变化将产生负面影响。物价的持续下降,不利于居民的消费增长。因为从居民的消费心理上看,买涨不买降是居民购物的习惯心理。由于居民对物价有进一步下降的预期,因此往往推迟消费,不利于居民消费的增长。另外,从统计上分析,由于物价的下降,名义消费增长往往低于实际消费的增长,这在一定程度上也不利于消费增长幅度的提高。
④、我国现阶段没有形成大的消费热点,难以带动消费的快速增长
经过近几年的培育和发展,我国目前已经形成了住房消费、居民汽车消费、通信及电子产品的消费、节假日消费及旅游消费等一些消费亮点,可以促进消费的稳定增长,但始终未能形成大的消费热点,因此不能带动消费的高速增长。
三、 相关数据收集
相关数据均来源于2006年《中国统计年鉴》:
23个大中城市城镇居民家庭基本情况(表格)
地区 平均每户就业人口(人) 平均每一就业者负担人数(人) 平均每人实际月收入(元) 人均可支配收入(元) 人均消费支出(元)
北京 1.6 1.8 1865.1 1633.2 1187.9
天津 1.4 2.0 2010.6 1889.8 939.8
石家庄 1.4 2.0 1061.3 1010.0 722.9
太原 1.3 2.2 1256.9 1159.9 789.5
呼和浩特 1.5 1.9 1354.2 1279.8 772.7
沈阳 1.3 2.1 1148.5 1048.7 812.1
大连 1.6 1.8 1269.8 1133.1 946.5
长春 1.8 1.7 1156.1 1016.1 690.2
哈尔滨 1.4 2.0 992.8 942.5 727.4
上海 1.6 1.9 1884.0 1686.1 1505.3
南京 1.4 2.0 1536.4 1394.0 920.6
杭州 1.5 1.9 1695.0 1464.9 1264.2
宁波 1.5 1.8 1759.4 1543.2 1271.4
合肥 1.6 1.8 1042.5 950.1 686.9
福州 1.7 1.9 1172.5 1059.4 942.8
厦门 1.5 1.9 1631.7 1394.3 998.7
南昌 1.4 1.8 1405.0 1321.1 665.4
济南 1.7 1.7 1491.3 1356.8 1071.4
青岛 1.6 1.8 1495.6 1378.5 1020.7
郑州 1.4 2.1 1012.2 954.2 750.3
武汉 1.5 2.0 1052.5 972.2 853.1
长沙 1.4 2.1 1256.9 1148.9 986.8
广州 1.7 1.8 1898.6 1591.1 1215.1

四、 模型的建立
根据数据,我们建立多元线性回归方程的一般模型为:
其中:
——人均消费支出
——常数项
——回归方程的参数
——平均每户就业人口数
——平均每一就业者负担人口数
——平均每人实际月收入
——人均可支配收入
——随即误差项
五、实验过程
(一)回归模型参数估计
根据数据建立多元线性回归方程:
首先利用Eviews软件对模型进行OLS估计,得样本回归方程。
利用Eviews输出结果如下:
Dependent Variable: Y
Method: Least Squares
Date: 12/11/07 Time: 16:08
Sample: 1 23
Included observations: 23
Variable Coefficient Std. Error t-Statistic Prob.
C -1682.180 1311.506 -1.282633 0.2159
X1 564.3490 395.2332 1.427889 0.1704
X2 569.1209 379.7866 1.498528 0.1513
X3 1.552510 0.629371 2.466766 0.0239
X4 -1.180652 0.742107 -1.590947 0.1290
R-squared 0.721234 Mean dependent var 945.2913
Adjusted R-squared 0.659286 S.D. dependent var 224.1711
S.E. of regression 130.8502 Akaike info criterion 12.77564
Sum squared resid 308191.9 Schwarz criterion 13.02249
Log likelihood -141.9199 F-statistic 11.64259
Durbin-Watson stat 2.047936 Prob(F-statistic) 0.000076
根据多元线性回归关于Eviews输出结果可以得到参数的估计值为: , , , ,
从而初步得到的回归方程为:

Se= (1311.506) (395.2332) (379.7866) (0.629371) (0.742107)
T= (-1.282633) (1.427889) (1.498528) (2.466766) (-1.590947)
F=11.64259 df=18
模型检验:由于在 的水平下,解释变量 、 、 的检验的P值都大于0.05,所以变量不显著,说明模型中可能存在多重共线性等问题,进而对模型进行修正。
(二)处理多重共线性
我们采用逐步回归法对模型的多重共线性进行检验和处理:
X1:
Dependent Variable: Y
Method: Least Squares
Date: 12/11/07 Time: 16:28
Sample: 1 23
Included observations: 23
Variable Coefficient Std. Error t-Statistic Prob.
C 153.8238 518.6688 0.296574 0.7697
X1 523.0964 341.4840 1.531833 0.1405
R-squared 0.100508 Mean dependent var 945.2913
Adjusted R-squared 0.057675 S.D. dependent var 224.1711
S.E. of regression 217.6105 Akaike info criterion 13.68623
Sum squared resid 994441.2 Schwarz criterion 13.78497
Log likelihood -155.3917 F-statistic 2.346511
Durbin-Watson stat 1.770750 Prob(F-statistic) 0.140491
X2:
Dependent Variable: Y
Method: Least Squares
Date: 12/11/07 Time: 16:29
Sample: 1 23
Included observations: 23
Variable Coefficient Std. Error t-Statistic Prob.
C 1756.641 667.2658 2.632596 0.0156
X2 -424.1146 347.9597 -1.218861 0.2364
R-squared 0.066070 Mean dependent var 945.2913
Adjusted R-squared 0.021597 S.D. dependent var 224.1711
S.E. of regression 221.7371 Akaike info criterion 13.72380
Sum squared resid 1032515. Schwarz criterion 13.82254
Log likelihood -155.8237 F-statistic 1.485623
Durbin-Watson stat 1.887292 Prob(F-statistic) 0.236412
X3:
Dependent Variable: Y
Method: Least Squares
Date: 12/11/07 Time: 16:29
Sample: 1 23
Included observations: 23
Variable Coefficient Std. Error t-Statistic Prob.
C 182.8827 137.8342 1.326831 0.1988
X3 0.540400 0.095343 5.667960 0.0000
R-squared 0.604712 Mean dependent var 945.2913
Adjusted R-squared 0.585888 S.D. dependent var 224.1711
S.E. of regression 144.2575 Akaike info criterion 12.86402
Sum squared resid 437014.5 Schwarz criterion 12.96276
Log likelihood -145.9362 F-statistic 32.12577
Durbin-Watson stat 2.064743 Prob(F-statistic) 0.000013
X4:
Dependent Variable: Y
Method: Least Squares
Date: 12/11/07 Time: 16:30
Sample: 1 23
Included observations: 23
Variable Coefficient Std. Error t-Statistic Prob.
C 184.7094 161.8178 1.141465 0.2665
X4 0.596476 0.124231 4.801338 0.0001
R-squared 0.523300 Mean dependent var 945.2913
Adjusted R-squared 0.500600 S.D. dependent var 224.1711
S.E. of regression 158.4178 Akaike info criterion 13.05129
Sum squared resid 527020.1 Schwarz criterion 13.15003
Log likelihood -148.0898 F-statistic 23.05284
Durbin-Watson stat 2.037087 Prob(F-statistic) 0.000096
由得出的数据可以看出, 的调整的判定系数最大,因此首先把 引入调整的方程中,然后在分别引入变量 、 、 进行OLS得:
X1、X3
Dependent Variable: Y
Method: Least Squares
Date: 12/11/07 Time: 16:32
Sample: 1 23
Included observations: 23
Variable Coefficient Std. Error t-Statistic Prob.
C -222.8991 345.9081 -0.644388 0.5266
X1 289.8101 227.2070 1.275533 0.2167
X3 0.517213 0.095693 5.404899 0.0000
R-squared 0.634449 Mean dependent var 945.2913
Adjusted R-squared 0.597894 S.D. dependent var 224.1711
S.E. of regression 142.1510 Akaike info criterion 12.87276
Sum squared resid 404138.2 Schwarz criterion 13.02087
Log likelihood -145.0368 F-statistic 17.35596
Durbin-Watson stat 2.032110 Prob(F-statistic) 0.000043
X2、X3
Dependent Variable: Y
Method: Least Squares
Date: 12/11/07 Time: 16:33
Sample: 1 23
Included observations: 23
Variable Coefficient Std. Error t-Statistic Prob.
C 239.5536 531.1435 0.451015 0.6568
X2 -27.00981 244.0392 -0.110678 0.9130
X3 0.536856 0.102783 5.223221 0.0000
R-squared 0.604954 Mean dependent var 945.2913
Adjusted R-squared 0.565449 S.D. dependent var 224.1711
S.E. of regression 147.7747 Akaike info criterion 12.95036
Sum squared resid 436747.0 Schwarz criterion 13.09847
Log likelihood -145.9292 F-statistic 15.31348
Durbin-Watson stat 2.063247 Prob(F-statistic) 0.000093
X3、X4
Dependent Variable: Y
Method: Least Squares
Date: 12/11/07 Time: 16:34
Sample: 1 23
Included observations: 23
Variable Coefficient Std. Error t-Statistic Prob.
C 331.7015 142.5882 2.326290 0.0306
X3 1.766892 0.553402 3.192782 0.0046
X4 -1.473721 0.656624 -2.244390 0.0363
R-squared 0.684240 Mean dependent var 945.2913
Adjusted R-squared 0.652664 S.D. dependent var 224.1711
S.E. of regression 132.1157 Akaike info criterion 12.72634
Sum squared resid 349091.0 Schwarz criterion 12.87445
Log likelihood -143.3529 F-statistic 21.66965
Durbin-Watson stat 2.111635 Prob(F-statistic) 0.000010
由数据结果可以看出,引入X4时方程的调整判定系数最大,且解释变量均通过了显著性检验,再分别引入X1、X2进行分析。
X1、X3、X4
Dependent Variable: Y
Method: Least Squares
Date: 12/11/07 Time: 16:37
Sample: 1 23
Included observations: 23
Variable Coefficient Std. Error t-Statistic Prob.
C 193.6693 403.8464 0.479562 0.6370
X1 89.29944 243.6512 0.366505 0.7180
X3 1.652622 0.646003 2.558228 0.0192
X4 -1.345001 0.757634 -1.775265 0.0919
R-squared 0.686457 Mean dependent var 945.2913
Adjusted R-squared 0.636950 S.D. dependent var 224.1711
S.E. of regression 135.0712 Akaike info criterion 12.80625
Sum squared resid 346640.3 Schwarz criterion 13.00373
Log likelihood -143.2719 F-statistic 13.86591
Durbin-Watson stat 2.082104 Prob(F-statistic) 0.000050
X2、X3、X4
Dependent Variable: Y
Method: Least Squares
Date: 12/11/07 Time: 16:38
Sample: 1 23
Included observations: 23
Variable Coefficient Std. Error t-Statistic Prob.
C 62.60939 489.2088 0.127981 0.8995
X2 134.1557 232.9303 0.575948 0.5714
X3 1.886588 0.600027 3.144175 0.0053
X4 -1.596394 0.701018 -2.277251 0.0345
R-squared 0.689658 Mean dependent var 945.2913
Adjusted R-squared 0.640657 S.D. dependent var 224.1711
S.E. of regression 134.3798 Akaike info criterion 12.79599
Sum squared resid 343100.8 Schwarz criterion 12.99347
Log likelihood -143.1539 F-statistic 14.07429
Durbin-Watson stat 2.143110 Prob(F-statistic) 0.000046
由输出结果可以看出,在 的水平下,解释变量 、 的检验的P值都大于0.05,解释变量不能通过显著性检验,因此可以得出结论模型中只能引入X3、X4两个变量。则调整后的多元线性回归方程为:

Se= (142.5882) (0.553402) (0.656624)
T= (2.326290) (3.192782) (-2.244390)
F=21.66965 df=20
(三).异方差性的检验
对模型 进行怀特检验:
White Heteroskedasticity Test:
F-statistic 1.071659 Probability 0.399378
Obs*R-squared 4.423847 Probability 0.351673

Test Equation:
Dependent Variable: RESID^2
Method: Least Squares
Date: 12/11/07 Time: 16:53
Sample: 1 23
Included observations: 23
Variable Coefficient Std. Error t-Statistic Prob.
C 34247.50 128527.9 0.266460 0.7929
X3 247.9623 628.1924 0.394723 0.6977
X3^2 -0.071268 0.187278 -0.380548 0.7080
X4 -333.6779 714.3390 -0.467114 0.6460
X4^2 0.18 0.229933 0.526841 0.6047
R-squared 0.192341 Mean dependent var 15177.87
Adjusted R-squared 0.012861 S.D. dependent var 23242.54
S.E. of regression 23092.59 Akaike info criterion 23.12207
Sum squared resid 9.60E+09 Schwarz criterion 23.36892
Log likelihood -260.9038 F-statistic 1.071659
Durbin-Watson stat 1.968939 Prob(F-statistic) 0.399378
由检验结果可知, ,由White检验知,在 时,查 分布表,得临界值 (20)=30.1435,因为 < (5)= 30.1435,所以模型中不存在异方差。
(四).自相关的检验
由模型的输出结果可知,估计结果都比较满意,无论是回归方程检验,还是参数显著性检验的检验概率,都显著小于0.05,D-W值为2.111635,显著性水平 =0.05下查Durbin-Watson表,其中n=23,解释变量的个数为2,得到下限临界值 ,上限临界值 , =1.543<D-W=2.111635<4 ,由DW检验决策规则可知,该模型不存在自相关问题。
六、对模型进行分析和解释经济学意义
回归方程的意义为:当平均每人实际月收入不变时,人均可支配收入每增加一个单位,人均消费支出减少1.473721个单位;当人均可支配收入不变时,平均每人实际月收入每增加一个单位,人均消费支出增加1.766892个单位。
七、 就模型所反映的问题给出针对性的政策建议或结论
对于我国人均消费支出的分析中,可以看出我国在过去的几年里经济发展稳健,但是由于种种原因导致我国经济的现状存在一定的问题,如不完善的社会保障制度导致消费结构不合理;过高的居民储蓄存款影响居民消费倾向;消费品生产行业投资方向失误和低效率引起国内市场消费梗阻;保守的消费观念和消费政策的制约;教育支出比重过大影响居民消费倾向 。对此我们国家应该在以下几个方面对居民消费中存在的问题进行对策研究
(一)建立和完善社会保障制度,增强居民消费信心
(二)培育新的消费热点,拓展居民的消费领域
(三)促使商品消费从自我积累型向信用支持型转变
(四)分层次促进居民消费
(五)破解影响消费结构优化的政策制约
(六)化解有效供给不足与产品相对过剩的矛盾

『肆』 有什么好的计量经济学论文题目简单一点的

学术堂整理了十五个计量经济学论文题目供大家进行参考:版

1、中国货市需求函权数实证研究.

2、货币超发的实证研究

3、存款准备金率变化的影响

4、货币需求与通胀关联分析

5、货币需求的弹性分析

6、我国居民消费函数实证分析

7、浙江省居民消费函数变化

8、日元实际汇率长期利率的实证分析

9、欧元实际汇率长期利率的实证分析

10、瑞朗实际汇率长期利率的实证分析

11、利率汇率与外商直接投资

12、利率与通胀的关系实证分析

13、利率与商业银行不良贷款率的波动实证分析

14、利率、租金与房价

15、货币政策、利率传导机制实证分析

『伍』 计量经济学论文怎么做

我们正在准备写,不过我们在学计量经济学这门课哟,我觉得跟数学建模的论文差不多吧,有回很多计量经济学答论文啊~你可以在网上找找的~~下面那个资料是我们学校对计量经济学的指导,里面也有范文哟~~
希望对你有帮助哈~~~看了范文应该就晓得该怎么做了~~

『陆』 如何应用计量经济学模型写毕业论文

上学期学过计量经济学,还使用TSM写过两篇报告。但是不是特别精通,你有问题的话,能回答的可以帮你。

『柒』 求计量经济学论文。

全球经济学界的殿堂级顶尖盛会
“ 2 0 1 0 第十届世界计量经济学大会”
于8 月1 7日在浦东的上海国际会议中
心 拉开 帷幕 ,历时5 天,于21 日结
束。 本次会议有来 自4 0 多个国家与
地区的l 5 0 0 多名顶尖经济学人出席,
不仅包括了国外的知名学者~2 0 0 7 年
诺贝尔经济学奖获得者罗杰 • 迈尔森
( Ro g e r My e r s o n),2 0 0 0 年诺贝
尔经济学奖获得者丹尼尔 •麦克法登
( Da n i e l Mc F a d d e n ),1 9 9 6 年诺贝
尔经济学奖获得者詹姆斯 • 莫里斯
( J a me s Mi r r l e e s ),爱丁堡大学政
治经济学讲座教授,伦敦经济学院教
授、2 0 1 0 年国际计量经济学会主席约
翰 • 摩尔 ( J o h n H. Mo o r e )等出席
本次大会,诸多国内知名教授和业界
学者也莅临了本次盛会,包括上海交
通大学安泰经济与管理学院院长、世
界计量经济学会院士周林教授 ,世界
银行副行长林毅夫教授,哥伦比亚大
学商学院讲座教授魏尚进,耶鲁大学
经济学教授陈晓红,清华经管学院院
长、美国伯克利加州大学经济系教授
钱颖一等华裔大师。
2 0l 0年计量 经 济学 会主 席约翰 • 摩尔会前表示,希望此次大会能
为中国经济学界和世界经济学界搭建

座沟通的桥梁,并期待能看到中国
国内高校的经济学者和经济学专业的
学生参加会议。在5 天会议上,1 5 0 0 多
位经济学家进行1 0 0 多场密集的学术报
告,对热点问题做思想火花的碰撞。 平衡经济增长与社会发展
世界银行首席经济学家、高级副
行长林毅夫认为,中国的经济增长有
望达到2 O %, 但达到这一目标的具
体时间不明,而且要保持 目前稳定的
经济发展速度,就必须要重视经济发
展的整体性 ,比如工业、服务行业以
及信息技术产业等都要做好整体的规
划, 技术水平也需要提高 林毅夫
说 ,中国要保持8 %一1 0 %的G DP 增长
率就必须提高技术水平,可以借鉴西
方发达国家第三次工业革命的经验,
购买其核心科技,不简单模仿,或照
搬其过程。在1 9 9 6 年诺贝尔经济学奖
得主詹姆斯 • 莫里斯看来,技术创新
对 中国经济的发展非常重要, 需要
通过加大对教育的投入,加强中国自
身的技术创新能力。加州大学圣迭戈
分校经济学教授罗杰 • 戈登 ( Ro g e r
G o r d o n)说: “ 3 %以上的高C P I 是不
可持续的”。因为经济刺激政策的滞
后性 ,导致最近中国的C P I 较高,但
随着经济刺激政策的退出,C P I 会缓
慢下降,因此暂时还无须多虑通胀问
题 。
清华经管学院院长钱颖一认为,
当前的 中国经济面临的空前挑战主
要体现在经济体制改革尚未完成 ,
其中包括法律、产权、政府和市场关
系的调整。此外,金融危机也为中国
留下了一些后遗症,比如国进民退现
象,经济结构调整停滞等。这些问题
很多都应该通过市场来解决。钱颖一指出,在未来2 0 年中国会发生更大的
变化,中国有可能成为世界最大经济
体 ,人均收入也将达到世界 中等水
平 ,城镇化会进一步推进。届时,中
国还有可能同时成为世界最大的进 口
国和出口国。1 9 9 6 年诺贝尔经济学奖
得主詹姆斯 • 莫里斯认为,由于人民
币不能自由兑换 ,在金融法规、市场
种类和智力资本方面上海与香港有一
定的距离,因此上海短时间内不可能
超过香港。
2 0 0 7 年诺 贝尔经济学奖得主罗
杰 • 迈尔森的观点是,目前中国经济
的高增长是普通 民众牺牲生活质量换
来的,这种高增长在未来将会难以为
继。中国各地区发展的严重不平衡,
从经济、技术到人民生活条件等各方
面的差异都会威胁到中国经济发展。
为什么中国发展这么迅速 ,但是
国家整体还是很贫穷?罗杰 • 迈尔森
认为最大的问题是8 %的增长率背后是
4 0 %的储蓄率 ,这是很难理解的经济
现象,也是经济发展的隐患。在其他
增长迅速的国家中,储蓄率通常只有
l 0 %。而在美国经济增长时期 ,储蓄
率接近0 。美国哥伦比亚商学院金融
学经济学教授魏尚进对此给出了一个
与众不同的解释 ,那就是中国的高储
蓄率、低消费率是由于中国性别比例
失调,男多女少造成的。
魏 尚进认 为,在2 0 0 3 年前后 中
国的8 0 后开始进入婚龄,这一代男多
女少,按传统男方父母为了买婚房开
始储蓄,并导致了消费的减少 ,从而
形成一种 “ 竞争性储蓄”。 “ 可 以
说,现在找结婚对象的门槛越来越高
了。”因此,从2 0 0 3 年开始,中国开
始呈现出储蓄率渐渐攀高 ,消费率逐
步下降的趋势。魏尚进同时认为,中
国的性别比例失衡将在未来1 0 年恶化
而不是好转 ,这个因素短期内不会逆
转。因此,目前中国的当务之急应该
是未雨绸缪,尽量平衡性别比例。
中国房地产 :刚需还是泡沫?
令人瞩目的中国房地产需求量到
底是刚性需求还是泡沫繁荣?曾任职
于长江商学院的加州大学圣迭戈分校
经济学教授罗杰 - 戈登最近注意到有
媒体报道北京的住房空置率 已经达到
6 0 %, “ 这是惊人的数据,在美国可
能只有5 %,在我看来这就是泡沫”。
他认为,房屋空置率是反映房地产市
场是否过热的重要指标,楼市过热已
成为中国经济所面临的主要风险之

。 要降低这一风险,他提出了几种
可能方案,比如征收房产税将是抑制
房价过快上涨的有效措施之一 ,同时
还应该拓宽中国现有的投资渠道,此
外地方政府过去对高房价起了助推作
用 ,现在应重新审视其在房产市场中
应该扮演的角色。而罗杰 • 迈尔森认
为很难预测房地产泡沫破裂是否会产
生经济危机,因为中国银行业与政府
有很紧密的联系。
1 9 9 6 年诺贝尔经济学奖得主詹姆
斯 - 莫里斯表示,房地产的崩盘并不

定会严重影响经济,2 0 0 8 年的美国
只是个特例。他分析指出,在大多数
情况下,即使房价出现3 0 %的下跌,
对整体经济的影响也十分有限。对于
拥有房产的人来说 ,房产价格下跌并
不会对家庭支出造成实质性影响,而
对正在供房的人来说,只要他们不违
约 ,银行系统也不会受到影响。同
时,莫里斯建议对空置房产征收房产
税, 因为以中国市场的现状而言 ,
房价下跌无助于缓解对房产的刚性需
求,大量已售住宅空置才是普通人无
法买房的症结

若不满意再联系[email protected] 我们学校维普 cnki 都有

『捌』 计量经济学的论文要怎么写

计量经济学其实很简单,总结起来就几个:
回归方程前的准备工作,用散点图看序列是版否是线性的,不是就做对权数处理。然后就是用J-B检验看是否符合正态分布。
回归方程:
参数的标准差,t统计检验。拟合度系数、调整拟合度系数和F检验。
多重共线性的检验和修正。
正相关的检验和修正。
异方差的检验和修正。

『玖』 计量经济学论文

关于我国城镇居民储蓄存款模型的计量经济分析
(我的姓名等信息就省略了啊 呵呵)
内容摘要:本文利用我国1978年以来的统计数字建立了可以通过各种检验的城镇居民储蓄率的模型,对我国城镇居民储蓄存款情况进行实证分析。通过对该模型的经济含义分析得出各种主要因素对我国城镇居民储蓄存款数量的影响程度,并针对我国城镇居民存款储蓄现状提出自己的一些建议。
关键词:居民储蓄存款 实证分析 主要因素
一、问题的提出
1978年以来,随着我国国民经济的飞速发展,我国的居民储蓄也出现高速增长的态势。进入90年代以后.我国居民储蓄存款余额始终保持在两位数的增长速度。我国居民储蓄存款持续增长这一经济现象引起国内理论界的广泛关注。这对我国经济的进一步增长有着有利的一面,但也会带来一定程度的负面影响。所以国家相继出台了一系列积极的财政和货币政策,以刺激国内消费和投资需求,分流储蓄,但是居民储蓄依然持续增加。由于居民的储蓄存款直接影响着居民的消费行为,影响着货币的供给量,进而间接影响着国家经济的发展,宏观调控的力度和效果,因此,对我国居民存款储蓄问题的深入研究就显得尤为重要,这有助于帮助大家认清现状,做出合理的决策。虽然我们作为本科阶段的学生对这个问题的理解和研究还不够深入和透彻,但对此问题的探索有利于我们更好的掌握专业知识,了解国情,提高实际操作水平和理论联系实际、发现问题、分析问题、解决问题的能力。
二、文献综述
我国有很多学者建立了许多的储蓄模型来分析各因素对居民储蓄的影响程度,但分析结论的差异很大。整理以前的研究成果,一个社会的储蓄总量受很多因数的影响,根据经典西方宏观经济学理论,储蓄水平主要受收入因数、利息率、物价水平、收入分配等因数的影响:
1.收入因数
收入是决定储蓄的重要因数,收入的变化会直接决定着储蓄的变化。在其他条件不变的情况下,储蓄与可支配收入之间存在着正方向的变化关系,即居民的可支配收入增加,储蓄量增加;个人可支配收入减少,储蓄量减少。可支配收入是指居民户在支付个人所得税之后,余下的全部实际现金收入。
2.利息率
传统经济学认为,在收入即定的条件下,较高的利息率会使储蓄增加。在本文中,我们选用的利息率是根据当年变动月份加权平均后的一年期储蓄存款加权利率。
3.物价水平
物价水平会导致居民户的消费倾向的改变,从而也就会改变居民户的储蓄倾向。本文用通货膨胀率来考察物价水平对储蓄率的影响。
4.收入分配
凯恩斯认为,收入分配的均等化程度越高,社会的平均消费倾向就会越高,社会的储蓄倾向就会越低。在国际上,衡量收入分配平均状况最常用的指数是基尼系数。
三、变量的选取及分析
目前我国正处于改革时期,各种不确定性因素很多。因而,要分析各种因素对中国居民储蓄行为的影响,必须立足于中国的国情。1998年后,中国经济运行进入了一种新的体制约束状态,出现了明显的供给过剩,需求对经济增长的约束与拉动作用明显增强,投资、消费膨胀的内在动力明显不足;同时,由于我国市场机制尚不健全,市场经济发育不成熟,市场体制的控制力还有限,从而不能形成一种有效地传导机制。市场化的改革对人们的经济行为、心理行为带来了很大影响,银行开始考虑贷款风险,投资者开始考虑投资回报,而消费者也开始考虑最佳的消费时机和预期收入。这说明,我们的微观经济层面已生长出一种内在的约束机制,然而社会各个方面对这些积极的因素还很不适应,微观主体内在约束机制较强与宏观经济市场传导机制不畅之间的矛盾,导致了投资行为受阻、消费行为审慎和储蓄持续稳定增长。当前影响我国居民储蓄的因素有很多,概括起来有以下几点:居民对社会经济形势的预期、可选择的投资渠道、信贷消费的发展、利率因素的影响、"假性"存款的影响、消费领域的信用等级、高收入阶层消费状况、就业形势压力、体制改革、居民收入水平等。
由于我现在的时间和能力有限,只能综合考虑,选取一部分变量进行研究,而且为了方便查找数据,只建立我国城镇居民储蓄存款模型进行研究。本文选用当年的收入增长率来考察收入因数对储蓄率的影响。用城镇居民的储蓄率作为被解释变量。另外还选取了中国1979年到2002年的各年的城镇居民收入的基尼系数、一年期储蓄利率和通货膨胀率作为解释变量。
四、数据及处理
本文模型数据样本为从1979-2002年。
年份 城镇居民储蓄率 城镇居民收入增长率 一年期储蓄利率 通货膨胀率 城镇居民基尼系数
1979 0.06368087 0.264869934 3.78 0.02 0.16
1980 0.08740586 0.220385089 5.04 0.059804 0.15
1981 0.07093626 0.104176446 5.4 0.024052 0.15
1982 0.08105586 0.139165412 5.67 0.01897 0.15
1983 0.09963501 0.093723563 5.76 0.015071 0.16
1984 0.13025584 0.245357008 5.76 0.027948 0.19
1985 0.15161502 0.184241122 6.72 0.08836 0.19
1986 0.17454542 0.280700971 7.2 0.060109 0.2
1987 0.2175453 0.167515864 7.2 0.072901 0.23
1988 0.17862152 0.219728929 7.68 0.185312 0.23
1989 0.2721202 0.199827095 11.12 0.177765 0.23
1990 0.32760614 0.123579703 9.92 0.021141 0.24
1991 0.31032443 0.163667824 7.92 0.028888 0.25
1992 0.3016907 0.228819425 7.56 0.053814 0.27
1993 0.3199061 0.311233327 9.26 0.131883 0.3
1994 0.42486435 0.397210898 10.98 0.216948 0.28
1995 0.44898036 0.261076104 10.98 0.147969 0.28
1996 0.40903477 0.198208003 9.21 0.060938 0.29
1997 0.30935015 0.127739779 7.17 0.007941 0.3
1998 0.25777978 0.108852141 5.02 -0.026 0.295
1999 0.21234608 0.134557035 2.89 -0.02993 0.3
2000 0.1239205 0.125688358 2.25 -0.01501 0.32
2001 0.24155306 0.14364071 2.25 -0.0079 0.33
2002 0.29897822 0.173106495 2.03 -0.01308 0.319
数据来源:各年份的《中国统计年鉴》
注:Y代表城镇居民储蓄率
X1代表城镇居民收入增长率
X2代表一年期储蓄利率
X3代表通货膨胀率
X4代表城镇居民基尼系数
五、模型及处理
基于以上数据,建立的模型是:
Y=β1+β2X1+β3X2+β4X3+β5X4+u
β1度量了截距项,它表示在没有收入的时候人们也要花钱消费,储蓄率为负。
β2度量了当城镇个人可支配收入率变动1%时,储蓄增长率的变动。
β3度量了当利率变动一个单位,其实也就是1%时,储蓄的增量的变动。
β4度量了当通货膨胀率变动一个单位,储蓄增量的变动。
β5度量了基尼系数对储蓄率的影响。这也是本文的重点变量。
u是随机误差项。
对Y做回归
利用eviews最小二乘估计结果如下

Variable Coefficient Std. Error t-Statistic Prob.
C -0.264646 0.045525 -5.813154 0.0000
X1 0.317426 0.175678 1.806864 0.0875
X2 0.024054 0.003688 6.523093 0.0000
X3 0.024476 0.205508 0.119099 0.9065
X4 1.127523 0.149318 7.551127 0.0000
R-squared 0.897971 Mean dependent var 0.234065
Adjusted R-squared 0.875298 S.D. dependent var 0.116109
S.E. of regression 0.041002 Akaike info criterion -3.360748
Sum squared resid 0.030260 Schwarz criterion -3.113901
Log likelihood 43.64860 F-statistic 39.60525
Durbin-Watson stat 1.541473 Prob(F-statistic) 0.000000
根据以上结果,初步得出的模型为
Y=-0.264646+0.317426X1+0.024054X2 +0.024476X3+1.127523X4.
1.经济意义的检验
该模型可以通过初步的经济意义的检验,系数的符号符合经济理论。
2.统计检验
从表中可以看出,显然通货膨胀率的系数通不过T检验,R2=0.897971, 2值为0.875298,模型的拟合情况较好。F检验的值为39.60525,整个模型对储蓄率的增长影响是显著的。
3.多重共线性的检验
从F值可知此模型整体显著,但是分析各个变量后发现X1和X3不显著,可能存在多重共线性,运用消除多重共线性的逐步回归方法我们可以得到要放弃X3 这个变量,重新做回归分析得到:
Y=β1+β2X1+β3X2+β5X4+u

Variable Coefficient Std. Error t-Statistic Prob.
C -0.271487 0.041322 -6.570056 0.0000
X1 0.314787 0.113799 2.766177 0.0119
X2 0.024487 0.003178 7.704986 0.0000
X4 1.145280 0.137886 8.305987 0.0000
R-squared 0.897094 Mean dependent var 0.229740
Adjusted R-squared 0.881658 S.D. dependent var 0.115517
S.E. of regression 0.039739 Akaike info criterion -3.461967
Sum squared resid 0.031583 Schwarz criterion -3.265624
Log likelihood 45.54360 F-statistic 58.11739
Durbin-Watson stat 1.556309 Prob(F-statistic) 0.000000
从新模型的整体效果来看,R值和F值都很好,而且各个变量的t统计量也表明各个变量对储蓄率的增长都有显著影响。
因此模型可设为Y= -0.271487+0.314787X1+0.024487X2+1.145280X4
4.异方差性检验
对新模型进行异方差性的检验,运用white检验,得到如下结果:

White Heteroskedasticity Test:
F-statistic 2.669433 Probability 0.054505
Obs*R-squared 11.50596 Probability 0.073942
Obs*R-squared的计算结果是11.50596,,由于选用的没有交叉乘积项的方式,所以自由度为7,在0.05的显著水平下,查表得 (7)=12.59〉11.50596,所以接受原假设,即该模型不存在异方差性。
5.自相关性的检验
从上表可知DW值为1.556309,且样本容量n=24,有三个解释变量的条件下,给定显著性水平 =0.01,查D-W表得,d =0.882,d =1.407,这时有d <dw=1.556039<4- d ,表明不存在自相关。
6.最终结果
从上面的计量分析中最后得到我国城镇居民的储蓄存款模型:
Y= -0.271487+0.314787X1+0.024487X2+1.145280X4
(0.041322) (0.113799) (0.003178) (0.137886)
t= (-6.570056) (2.766177) (7.704986) (8.305987)
R2= 0.897094 df=20 F=58.11739 DW=1.556309
六、结论与建议
1.模型的实证分析
城镇居民的收入增长率变化对居民的储蓄率变化的影响还是比较明显的,储蓄率对收入增长率的弹性为0.314787, 在其他条件不变的情况下,居民的收入变化1%,储蓄率同方向变化0.314787%。
利率变动对实际的储蓄率变动的影响并不是十分的重要,弹性仅为0.024487。这方面有很多的原因,其中对未来预期的不确定性是一个很重要的原因,尤其是1998年以后,随着住房、医疗、教育等方面的改革,人们的储蓄倾向受预期的影响更大。这方面从人民银行数次通过降息来调整储蓄量,但是效果并不明显也可以看出来。
基尼系数对储蓄率的影响非常大,弹性达到了1.145280。这里可以看出,收入分配的均等程度对储蓄的影响非常明显。这是由于收入高的群体的储蓄倾向要明显的高于收入低的群体。
2.对宏观经济的政策建议
基于基尼系数对储蓄率的很大的影响,因此,国家应该重视对分配领域的调节,加大对低收入的者的转移支付,切合中国实际的对税收领域进行改革,缩小社会的贫富差距:
1)不要"逼"老百姓花钱,而要针对不同收入阶层,采取不同对策,引导居民消费
首先,增加中低收入居民的个人相对收入,在分配政策上进一步缩小收入差距;进行微观层面的改革和合适的福利体系改革,大力提高人们的收入预期;控制教育和医疗费用,降低人们的支出预期,减少公众的焦虑;积极发展消费信贷,尤其是助学贷款,减少人们为教育而储蓄的需要,让其"有钱花"。
其次,引导高收入居民向更高层次的消费过渡,努力提高其消费倾向,增加消费供给,让其"有地方花钱",从而抑制储蓄倾向的进一步提高。
2)不要"逼"老百姓投资,而要不断增加金融创新,努力改善投资环境,刺激居民投资
目前的储蓄高增长主要是由于居民收入的持续增长、消费和投资的增速缓慢、居民手持现金的逐步减少而引起,充分暴露出我国经济架构的严重失衡。因此,必须采取相应的措施缓解储蓄增长的势头,并积极引导储蓄向投资转化:
第一,提供多样化的金融工具,不断开发新的金融产品,大力发展商业保险和社会保险,拓宽居民投资渠道,引导居民储蓄资金的合理分流。
第二,进一步发展和完善股票市场,规范上市公司的市场行为,逐步建立完善的、公开的信息披露制度,增强居民的投资信心。
第三,大力发展债券市场,尤其是企业债券市场,充分发挥债券融资的优势,加大企业从资本市场直接融资的比重。
第四,积极引导民间投资,用新型的融资方式拓宽民间投融资的渠道。稳定发展民营金融机构;建立民间投资退出机制;加强民间投资的信用体系建设。
3.模型的不足
在实际经济活动中,人们的预期对储蓄率的影响是非常明显的。由于这方面的影响很难用数据来描述以及碍于本文作者水平有限,所以本模型没有反映人们的预期对储蓄率的影响。

参考文献
1.何德旭:10万亿储蓄的多视角分析[N]。金融时报,2003-05-19.
2.屈宏斌:居民储蓄高增长堪忧[N]。经济观察报, 2003-03-31.
3.张锐:高储蓄挑战宏观政策[N]。世纪经济报道, 2003-04-29.
4.郭树清:深化投融资体制改革与完善货币政策传导机制[J].金融研究,2002,(2)。
5.武少俊:强化消费需求启动措施,保证经济持续快速增长[J].金融研究,2003,(5)
6.潘雅琼:我国城乡居民储蓄存款余额的趋势预测[J].统计与决策,2003(6)
7.刘隽亭,乔瑞红:我国居民储蓄持续增长的原因及特点分析[J].天津商学院学报,2005(2)
8.李焰:关于利率与我国居民储蓄关系的探讨[J].经济研究,1999(11)
9.韩汉君:中国的居民储蓄存款及其利率弹性[J].上海经济研究,1999(9)
10.庞皓:计量经济学.科学出版社,2008-1

阅读全文

与如何计量经济学论文相关的资料

热点内容
中天高科国际贸易 浏览:896
都匀经济开发区2018 浏览:391
辉县农村信用社招聘 浏览:187
鹤壁市灵山文化产业园 浏览:753
国际金融和国际金融研究 浏览:91
乌鲁木齐有农村信用社 浏览:897
重庆农村商业银行ipo保荐机构 浏览:628
昆明市十一五中药材种植产业发展规划 浏览:748
博瑞盛和苑经济适用房 浏览:708
即墨箱包贸易公司 浏览:720
江苏市人均gdp排名2015 浏览:279
市场用经济学一览 浏览:826
中山2017年第一季度gdp 浏览:59
中国金融证券有限公司怎么样 浏览:814
国内金融机构的现状 浏览:255
西方经济学自考论述题 浏览:772
汽车行业产业链发展史 浏览:488
创新文化产业发展理念 浏览:822
国际贸易开题报告英文参考文献 浏览:757
如何理解管理经济学 浏览:22