导航:首页 > 经济学法 > 概率在经济学中的运用

概率在经济学中的运用

发布时间:2021-03-07 16:16:20

1. 概率统计在经济理论中的应用,能不能举几个例子啊

关于数字的东西 都和概率统计有关系啊

很多 指标都是一个数学模型

2. 概率论与数理统计应用在哪些新领域中

经济学基础里面就很多公式是用概率得出的啊
金融业 炒股 靠概率

统计学在物理学微观方面应用也广
到论文网上搜搜相关关键词 你能搜出很多文献

3. 概率统计知识在经济学中有哪些应用

概率统计知识在效用函数、保险和资产组合等经济学领域都用的到。

4. 概率论与数理统计在经济生活中应用的小例子有哪些啊

商场促销问题,下雨和不下雨的概率分别为04,0.6,室内促销利润1万,室外5万,如果下雨损失3万,如何选择,可以用数学期望进行比较

5. 概率论方法在经济管理中的应用(说得具体点)

在经济学上把抄人分为三袭种人:风险喜好者、风险厌恶者和风险中立者,实际上在日常生活中大部分人是风险厌恶者,不喜欢风险是很多人的共性,因此在面对风险时如何防范风险成为很多人不得不考虑的问题,而买保险是很多人的理性选择。

6. 概率论在生活中的应用

概率论是一门与现实生活紧密相连的学科,不过大多数人对这门学科的理解还是很平凡的:投一枚硬币,0.5的概率正面朝上,0.5的概率反面朝上,这就是概率论嘛。学过概率论的人多以为这门课较为理论化,特别是像大数定律,极限定理等内容与现实脱节很大,专业性很强。其实如果我们用概率论的方法对日常生活中的一些看起来比较平凡的内容做些分析,常常会得到深刻的结果。

在自然界和现实生活中,一些事物都是相互联系和不断发展的。在它们彼此间的联系和发展中,根据它们是否有必然的因果联系,可以分成两大类:一类是确定性现象,指在一定条件下,必定会导致某种确定的结果。例如,同性电荷相互排斥,异性电和相互吸引;在标准大气压下,水加热到100摄氏度,就必然会沸腾。事物间的这种联系是属于必然性的。另一类是不确定性现象。这类现象在一定条件下的结果是不确定的,即人们在未作观察或试验之前,不能预知其结果。例如,向桌上抛一枚硬币,我们不能预知向上的是正面还是反面;随机地找一户家庭调查其收入情况,我们亦不能预知其收入是多少。为什么在相同的情况下,会出现这种不确定的结果呢?这是因为,我们说的“相同条件”是指一些主要条件来说的,除了这些主要条件外,还会有许多次要条件和偶然因素是人们无法事先预料的。但另一方面,对这些不确定性现象进行大量、重复的实验时,人们会发现,其结果会出现某种“统计规律性”:重复抛一枚硬币多次,出现正、反两面的次数大致会各占一半;调查多户家庭,其收入会呈现“两头小,中间大”的状况,即处于中间状态的是大多数。这种在每次试验中呈现不确定性,而在大量重复试验中又呈现某种统计规律性的现象较随机现象。概率统计就是研究随机现象并揭示其统计规律性的一个数学分支,它在自然科学及社会科学的诸多领域都有着广泛的应用。

概率,简单地说,就是一件事发生的可能性的大小。比如:太阳每天都会东升西落,这件事发生的概率就是100%或者说是1,因为它肯定会发生;而太阳西升东落的概率就是0,因为它肯定不会发生。但生活中的很多现象是既有可能发生,也有可能不发生的,比如某天会不会下雨、买东西买到次品等等,这类事件的概率就介于0和100%之间,或者说0和1之间。大部分人认为一件事概率为0即为不可能事件,这是不对的。比如甲乙玩一个游戏,甲随机写出一个大于0小于1的数,乙来猜。1.乙一次猜中这个数2.乙每秒才一次,一直猜下去,“最终”猜中这个数。这两件事发生的概率的概率都是0,但显然他们都有可能发生,甚至可以“直观”地讲2发生的可能性更大些。这说明概率为0的事件也是有可能发生的。不过在我看来,这样的可能性实在太小了,在实际操作中认为不可能也是有道理的,但不管怎么说,他们确实是可能事件。

7. 概率论与数理统计在经济学领域里具体体现

资产定价理论的基础之一就是概率论和数理统计。
此外,计量经济学的基石也是概率论是数理统计。

8. 概率统计运用到经济中有什么意义

关键是你学得什么
如果学习实际操作性的知识应该是很有用的,尤其是回归和实验设计等,概率论是基础数学方法,数理统计是一些统计方法在概率论基础上的运用,单纯的大学本科学习这门是看不到什么用处的,必须结合相应的和操作,可以多元统计分析。
因为有句话说模型拟合的越好,预测就越差,所以在运用时还是小心。
总的来说还是要结合你的专业知识吧,运用就是数据分析方面的。

9. 概率论在经济中的应用

概率论在经济生活中应用十分广泛,本文主要从古典概型、数学期望以及大数定律和中心极限定理3个方面介绍了概率论相关知识,并举例说明其在经济生活中的应用。其中,在古典概型中重点介绍了波利亚模型,并给出了数值模拟的过程,验证了所得结论。概率论作为数学工具的运用,为经济学做出了突出贡献,也使得经济学变得更加规范和完善。

概率论是一门研究随机现象统计规律的数学分支。随机现象是指在一定条件下进行试验或观察时,会出现不同的结果,但具体出现哪种结果在每次试验前都无法确定。概率论正是通过对这些结果进行演绎和归纳,从数量的角度研究随机现象的统计规律性。概率论最初起源于赌博问题。当今在社会科学领域,尤其是在经济学中,描述经济数据特征,最优决策以及保险等方面都要用到概率论的相关知识。

概率论在经济学问题研究中具有以下优势:一是概率论可以很好地运用数学语言来建立模型,从而将经济范畴之间关系的描述和研究数量化;二是概率论有着严密的逻辑推理,不但可以尽可能地规避漏洞和错误,而且能够推导经济运行的各种轨迹,对经济行为的预测起指导作用;三是概率论的引进使得传统经济学突破了确定性行为研究的界限,可以在不确定性条件下,得到仅凭直觉不易得出的结论,更加具有概括性[1]。概率论作为数学工具的运用,使得经济学成为一门更加规范和完善的科学。

概率论在经济生活中的应用

古典概型

古典概型具有两个特点:一是所涉及的随机现象的样本点只有有限个;二是每个样本点发生的可能性都相等,即等可能性[2]。古典方法是概率论发展初期求概率常用的方法,它主要借助于演绎或外推。比如掷骰子、摸球、彩票等问题都可以通过这一方法求得概率。

例1:假设罐中有b个黑球、r个红球,每次试验随机取出一个球,然后将原球放回,并且再加入c个同色球和d个异色球。这样的随机试验模型称为波利亚模型,它可以用来描述传染病传播和贫富差距以及安全生产等现象。

现在要从罐中取出两个红球和一个黑球。由分析可知第二个球被抽取这一事件是在第一个球被抽取的条件下发生的,同理第三个球被抽取同样受前两次结果的影响,根据条件概率公式与乘法公式

可得

容易看到,以上概率与黑球在第几次被抽取有关。该模型有以下几种情况:

1)当时,称为不返回抽样,此时前次抽取结果会对后次抽取结果造成影响。但在抽取的黑球与红球个数确定的情况下,其概率与抽出球的次序无关。此例中有

2)当时,称为返回抽样。此时每次抽取都是相互独立事件,且上述三个概率相等,此例中有

3)当时,称为传染病模型。此时每次取出球后都会增加下次取到同色球的概率。此例中有

4)当时,称为安全模型。此时每当红球被取出,则会降低下一次取出红球的概率;每当黑球被取出,则会降低下次取出黑球的概率,相应地,取出红球的概率就会增加

阅读全文

与概率在经济学中的运用相关的资料

热点内容
中天高科国际贸易 浏览:896
都匀经济开发区2018 浏览:391
辉县农村信用社招聘 浏览:187
鹤壁市灵山文化产业园 浏览:753
国际金融和国际金融研究 浏览:91
乌鲁木齐有农村信用社 浏览:897
重庆农村商业银行ipo保荐机构 浏览:628
昆明市十一五中药材种植产业发展规划 浏览:748
博瑞盛和苑经济适用房 浏览:708
即墨箱包贸易公司 浏览:720
江苏市人均gdp排名2015 浏览:279
市场用经济学一览 浏览:826
中山2017年第一季度gdp 浏览:59
中国金融证券有限公司怎么样 浏览:814
国内金融机构的现状 浏览:255
西方经济学自考论述题 浏览:772
汽车行业产业链发展史 浏览:488
创新文化产业发展理念 浏览:822
国际贸易开题报告英文参考文献 浏览:757
如何理解管理经济学 浏览:22