⑴ 计量经济学软件:Eviews操作简明教程 求PDF!!!做多元线性回归模型
你要第一版还是第二版,网络私信你了
⑵ 求一份计量经济学大作业 多元线性回归模型,多元线性回归模型,有数据来源,用eviews分析的过程
始盗龙是目前知道的最早的恐龙,出现在2.3亿年前.
在目前已发现的诸多恐龙内中,始盗龙是最原始容的一种。1993年,始盗龙发现于南美洲阿根廷西北部一处极其荒芜不毛之地——伊斯巨拉斯托盆地,该地属于三叠纪地层。
⑶ 计量经济学多元线性回归模型F统计推断,整体显著性检验R ² 越接近于1,是不是F统计量趋近无穷
你这和书上写点到了第二个公式兄弟,看清楚写。不要乱截图
⑷ 求一份计量经济学论文,多元线性回归模型,有数据来源,用eviews分析的过程,谢谢 !!!
最好有以下几块东西
1、选定研究对象
(确定被解释变量,说明选题的意义和原因等专。)属
2、确定解释变量,尽量完备地考虑到可能的相关变量供选择,并初步判定个变量对被解释变量的影响方向。
( 作出相应的说明 )
3、确定理论模型或函数式
(根据相应的理论和经济关系设立模型形式,并提出假设,系数是正的还是负的等。)
(二)数据的收集和整理
(三)数据处理和回归分析
(先观察数据的特点,观看和输出散点图,最后选择相应的变量关系式进行OLS回归,并输出会归结果。)
(四)回归结果分析和检验
(写出模型估计的结果)
1、回归结果的经济理论检验,方向正确否?理论一致否?
2、统计检验,t检验 F 检验 R2— 拟合优度检验
3、模型设定形式正确否?可试试其他形式。
4、模型的稳定性检验。
(五)模型的修正
(对所发现的模型变量选择问题、设定偏误、模型不稳定等,进行修正。)
(六)确定模型
(七)预测
⑸ 计量经济学 求一份 EViews软件做的多元线性回归模型 要有数据和表格结果分析
应用计量经济学综合实验报告
一、观察序列特征
(一)变量的描述统计
变量的描述统计表
X
Y
Mean
24.19133
38.51823
Median
24.60819
35.06598
Maximum
31.51318
59.66837
Minimum
12.28087
24.88616
Std. Dev.
4.378617
9.715057
Skewness
-0.857323
0.890026
Kurtosis
3.169629
2.605577
Jarque-Bera
17.81273
19.94491
Probability
0.000136
0.000047
Sum
3483.552
5546.625
Sum Sq. Dev.
2741.637
13496.67
Observations
144
144
(二)变量的趋势分析
1、各变量的时间序列图
2、根据时序图大致判断变量的平稳性
答:不平稳
(三)双变量分析
1、画出XY散点图
2、计算变量X和Y间的相关系数
Dependent Variable: Y
Method: Least Squares
Date: 10/19/12 Time: 16:31
Sample (adjusted): 1 144
Included observations: 144 after adjustments
Variable
Coefficient
Std. Error
t-Statistic
Prob.
X
1.531880
0.042949
35.66763
0.0000
R-squared
-0.700579
Mean dependent var
38.51823
Adjusted R-squared
-0.700579
S.D. dependent var
9.715057
S.E. of regression
12.66904
Akaike info criterion
7.923120
Sum squared resid
22952.15
Schwarz criterion
7.943743
Log likelihood
-569.4646
Durbin-Watson stat
0.028629
二、计量经济学分析
(一)X和Y的单整阶数检验(选择适当的检验模型并说明理由,报告结果及结论)
X的一阶单整检验:
Included observations: 196 after adjustments
Variable
Coefficient
Std. Error
t-Statistic
Prob.
D(X(-1))
-1.097771
0.071696
-15.31146
0.0000
C
0.161673
0.153431
1.053718
0.2933
@TREND(1)
-0.001153
0.001339
-0.861117
0.3902
趋势项不显著,改选模型二;
Included observations: 196 after adjustments
Variable
Coefficient
Std. Error
t-Statistic
Prob.
D(X(-1))
-1.094074
0.071520
-15.29752
0.0000
C
0.046755
0.075656
0.617991
0.5373
截距项不显著,改选模型一;
Lag Length: 0 (Automatic based on SIC, MAXLAG=14)
t-Statistic
Prob.*
Augmented Dickey-Fuller test statistic
-15.30936
0.0000
Test critical values:
1% level
-2.576814
5% level
-1.942456
10% level
-1.615622
根据ADF检验值可知,ADF值小于各个显著水平下的临界值,故应拒绝原假设,认为没有单位根,是平稳序列。故X是一阶单整序列;
Y的一阶单整检验:
Included observations: 196 after adjustments
Variable
Coefficient
Std. Error
t-Statistic
Prob.
D(Y(-1))
-0.934141
0.072131
-12.95060
0.0000
C
-0.055176
0.193160
-0.285650
0.7755
@TREND(1)
0.001979
0.001693
1.169003
0.2438
趋势项不显著,改选模型二;
Included observations: 196 after adjustments
Variable
Coefficient
Std. Error
t-Statistic
Prob.
D(Y(-1))
-0.927506
0.071975
-12.88644
0.0000
C
0.140769
0.096086
1.465030
0.1445
截距项不显著,改选模型一;
Lag Length: 0 (Automatic based on SIC, MAXLAG=14)
t-Statistic
Prob.*
Augmented Dickey-Fuller test statistic
-12.76596
0.0000
Test critical values:
1% level
-2.576814
5% level
-1.942456
10% level
-1.615622
根据ADF检验值可知,ADF值小于各个显著水平下的临界值,故应拒绝原假设,认为没有单位根,是平稳序列。故Y是一阶单整序列;
综上所述,X与Y都是一阶单整序列
(二)用Y,X,常数项,以及Y的滞后一期值建立二元回归模型
1、用OLS估计模型Y=b0+b1X+b2Y-1+m,回归结果如下:
Variable
Coefficient
Std. Error
t-Statistic
Prob.
X
0.013866
0.015102
0.918190
0.3597
C
-0.190932
0.521862
-0.365867
0.7149
Y(-1)
1.001264
0.011224
89.20662
0.0000
2、检验和改进
(1)统计检验和结论(t检验,F检验)
用t检验: P(x)>α,不显著
P(C)>α,不显著
PY(-1)> α,显著
用f检验:P(f)<α,显著
(2)计量经济学检验和结论(异方差检验,序列相关性检验)
F-statistic
0.689788
Probability
0.599846
Obs*R-squared
2.790897
Probability
0.593405
不显著,接受原假设,故无异方差性
Breusch-Godfrey Serial Correlation LM Test:
F-statistic
0.471125
Probability
0.625019
Obs*R-squared
0.962067
Probability
0.618144
不显著,接受原假设,故无序列相关性
(3)对模型估计方法的改进(若存在有异方差或序列相关性时,采用WLS或GLS估计的结果)
Variable
Coefficient
Std. Error
t-Statistic
Prob.
C
-0.196548
0.090185
-2.179381
0.0305
X
0.012001
0.002178
5.509368
0.0000
Y(-1)
1.002499
0.001697
590.6897
0.0000
Weighted Statistics
R-squared
0.999990
Mean dependent var
37.17069
Adjusted R-squared
0.999990
S.D. dependent var
96.28015
S.E. of regression
0.307135
Akaike info criterion
0.492055
Sum squared resid
18.30044
Schwarz criterion
0.542053
Log likelihood
-45.46742
F-statistic
179795.0
Durbin-Watson stat
2.017946
Prob(F-statistic)
0.000000
Unweighted Statistics
R-squared
0.976307
Mean dependent var
37.63027
Adjusted R-squared
0.976062
S.D. dependent var
8.651587
S.E. of regression
1.338552
Sum squared resid
347.5940
Durbin-Watson stat
1.858016
(4)最终的模型
1、Y=-0.196548+0.012001X+1.002499Y(-1)
2、R^2=0.999990
3、调整后的R=0.999990
4、D.W=1.858016
⑹ 计量经济学多元线性回归模型属于什么研究方法
模拟法(模型方法)
模拟法是先依照原型的主要特征,创设一个相似的模型,然后通过模型来间接研究原型的一种形容方法。根据模型和原型之间的相似关系,模拟法可分为物理模拟和数学模拟两种。