导航:首页 > 金融学业 > 互联网金融资金闭环大数据

互联网金融资金闭环大数据

发布时间:2021-02-28 19:22:15

互联网金融借力大数据玩转风险控制

互联网金融借力大数据玩转风险控制
近两年,金融行业内竞争在网络平台上全面展开。大数据时代,这种竞争说到底就是“数据为王”。为什么大数据在互联网金融领域扮演着如此重要的角色?业内人士认为,“互联网+金融”具有共享性,提供了“大数据”和更充分的信息,即通过更完善的价格信号,帮助协调不同经济部门非集中化决策。
信息占据核心地位
信息占金融市场核心地位。金融市场是进行资本配置和监管的一种制度安排,而资本配置及其监管从本质上来说是信息问题。因此,金融市场即进行信息的生产、传递、扩散和利用的市场。
在“互联网+金融”时代,信息的传递和扩散更加便捷,信息的生产成本更为低廉,信息的利用渠道和方式也愈发多元化,从而越来越容易实现信息共享。这种共享不仅包含着各类不同金融机构之间的信息共享,而且包含着金融机构与其他行业之间的信息共享、金融机构和监管机构及企业间的共享等。
信息共享并由此形成的“大数据”,降低了单个金融机构获得信息、甄别信息的成本,提高了信息利用的效率,使信息的生产和传播充分而顺畅,从而极大地降低了信息的不完备和不对称程度。“大数据”不仅使投资者可以获取各种投资品种的价格及影响这些价格的因素的信息,而且筹资者也能获取不同的融资方式的成本的信息,管理部门能够获取金融交易是否正常进行、各种规则是否得到遵守的信息,使金融体系的不同参与者都能作出各自的决策。
正确看待大数据征信
互联网金融的发展带火了P2P市场,也折射出风控体系建设的缺失。P2P跑路现象主要原因就是风控缺失,体现在“重担保、轻风控”和“重线上风控、轻线下调查”。
当前,多数P2P平台“重担保、轻风控”的思路是不正确的,担保是外界因素,风控是内在因素,一味强调用外在的因素而不解决自身的问题,不可能实现良好运转。互联网金融的风险管理不在规则之中,而在互联网和金融双重叠加的对象之中,其最基本的风险边界应是保证投资者的资产安全。守住了安全底线,这些平台才能健康成长。所以,P2P平台根本的安全底线还在于加强自身对象的风控。
另一方面,风控分为贷前、贷中、贷后风控。目前有些P2P平台从最开始的贷前风控就缺失,贷前风控最重要的是要实现“线下调查”,即通过线下实地走访和考察,对客户信息进行交叉验证和真实性验证,包括对借款人银行流水、征信报告、财产证明、工作证明等的审查,通过审查评估借款人还款能力。这些线下风控是不可或缺的,不能迷信或过分夸大“互联网+”的效率和普惠,线上的大数据和线下的实地考察必须结合。
基于大数据、个人征信的风控手段已有很多,大数据征信是实现P2P风控的创新路径。但是也需要正确看待,既不能要求大数据征信一步登天,一下子带来质的改变;也不能风声鹤唳,一有创新就以各种名义围追堵截,而需要给予更多理性的包容和试错的空间,在渐进创新中不断完善大数据征信体系。
目前存在的困难:
一是数据的虚拟性和“信息噪音”。虽然大数据及其分析提高了信息获取的数量和精度,但由于虚拟世界中信息大爆炸造成的“信息噪音”,导致交易者身份、交易真实性、信用评价的验证难度更大,反而可能在另一层面更强化信息不对称程度,也更容易存在信息垄断。
二是信用数据关联的不确定性。信用数据是多样化的,包括朋友信用、爱情信用、事业信用等。所谓忠孝不能两全,一个对朋友忠诚的人不一定对事业忠诚。对事业或工作忠诚,也不一定能说明他的金融信用好。大数据通过日常信用来判断金融信用会出现偏差。
三是“数据孤岛”不能实现数据共享。互联网平台具有强烈的规模效应,平台越大越容易产生数据,越容易使用数据。例如,阿里小贷主要通过卖家累计的海量交易信息及资金流水,也可通过大数据的分析在几秒内完成对商家的授信。但是,阿里小贷的数据,不可能提供给其他公司使用。因此,下一步应推动数据的整合和共享。
玩转大数据风控系统
传统的风控模式更多关注的是静态风险,对风险进行预判。而P2P市场让越来越多的传统金融企业转型互联网金融,大数据技术要对风险进行实时把握,要做到两点:大数据和云计算结合以及大数据的流处理模式。
大数据和云计算结合,实现了实时监控。云计算为大数据实时把握提供了硬件基础,可以实现秒级的数据采集、分析和挖掘。流处理模式实现了静态风险和动态风险的有效结合。一种人习惯先把信息存下来,然后一次性地处理掉,也叫批处理,如定期处理过期邮件;另一种人喜欢信息来一点处理一点,无用信息直接过滤掉,有用的存起来。后者就是流处理的基本范式,实现了实时监控。
怎样才能针对企业自身的发展和业务方向,玩转大数据风控系统,使其发挥到最大作用?我认为,要关注“大众数据”。要意识到互联网“长尾效应”的作用,互联网环境下“得大众者得天下”,关注大众数据,要了解大众心态,在归属感、成就感和参与感上下功夫。
还要将业务驱动转向数据驱动。理解数据的价值,通过数据处理创造商业价值,看似零散的数据背后寻找消费逻辑。此外,还应改造公司数据相关的IT部门,将其从“成本中心”转化为“利润中心”,充分认识大数据是核心竞争力,重视其挖掘和预测的能力。
当然,实时大数据风控还需要很多方面的探索,如何借助大数据建立全生命风控体系,形成贷前、贷中、贷后流程管理系统和决策系统。另外,还需加强信用数据相关性研究和量化模型的开发,金融信用(主要指借贷数据)可获得性比日常信用数据难,以金融信用为中心,通过日常信用,构建个人信用评估体系。

② 大数据对互联网金融的发展有什么作用

自互联网金融被广而告之以后,大家就一直在被灌输大数据在互联网金融发展中的作用巨大,甚至最近更有专家说大数据是互联网金融发展的加速器。但是似乎并没有一个系统的说法,大数据具体有什么用,我们只知道互联网金融确实是其中的获益者之一,下面且听听通金魔方分析师的见解。

我们首先从互联网金融的含义生对大数据有个简单的了解。正如互联网金融之父谢平所言,所谓的互联网金融,并非是简单的将互联网和金融进行叠加。

正确的理解应该是基于互联网应用的特殊技术,推动了全新的商业模式,产品服务,对金融领域产生的颠覆性变革。在这其中,大数据则充当了很重要的推手。接下来我们来看一下大数据在互联网金融发展中的作用体现。

精准的用户分析

大数据的首要作用就是在于它能够对用户进行准确的分析,然后帮助互联网金融找到合适的目标用户,进而实现精准营销。

在目前的互联网金融领域,很多新兴的企业,大多以做贷款或者金融衍生产品为主。其主打的卖点主要在于较高的投资收益或者较低的手续费优惠。但是在竞争日益加剧的市场环境下,由于不能保证资金流稳定,或者客户粘性而倒闭的企业随处可见。

据相关数据显示,截止2013年底,中国境内共有450家P2P公司,其中有的甚至在创立几天内即宣布倒闭。在这样的基础之上,实现精准营销才是这些企业唯一的出路,这也正是大数据的作用所在。

虽然互联网金融的发展仍然处于起步阶段,但是却已经有了相当丰富的成熟案例。比如通过定向技术查看用户近期浏览过的理财网站,通过关键词,浏览数据建立用户模型,从而实现优化产品的实时推荐频度,以便最大限度的锁定有效用户等。

帮助金融企业风险防控

除了以上的首要作用之外,大数据还能够帮助金融企业加强风险的可控性。在精细化管理方面助推了互联网金融,尤其是信贷服务的发展。

比如通过对大量网络交易及行为数据的分析,可以为用户的信用评估提供可靠的依据。这些信用评估可以帮助金融企业在用户的还款意愿和能力方面做出较为准确的结论,以便决定是否继续为该用户提供快速授信或者现金分期等服务。从而最大限度的降低金融企业的业务风险。

当然,我们对于个人用户或者企业用户信用好坏的评定取决于诸多因素,但是我们也可以从这诸多因素中找到相应的数据。比如我们要寻找这个用户的整体收入,固定资产,性格特点甚至是行为习惯等,那么我们就可以从网上银行,电商,社交网络,甚至招聘和婚介网站等地方获取。

大数据的作用在这里面得以体现的最关键的一点就是,这些所谓的数据往往都是以动态变量的形式存在的,而我们要想以此为依据获得准确的信用评级,则更要倚重于大数据的持续分析功能。

通过上面的分析,我们也不得不承认大数据在互联网金融发展中作用巨大,只不过在现在这个互联网金融的起步阶段,大数据作用的发掘仍不算完整,我们只能一步一步的在不断的发展中发现它的好。

③ 大数据金融是不是互联网金融

大数据并不是单指互联网金融。

大数据金融是指依托于海量、非结构化的数据,通过互联网、云计算等信息化方式对其数据进行专业化的挖掘和分析,并与传统金融服务相结合,创新性开展相关资金融通工作的统称。

大数据金融扩充了金融业的企业种类,不再是传统金融独大,并创新了金融产品和服务,扩大了客户范围,降低了企业成本。大数据金融按照平台运营模式,可分为平台金融和供应链金融两大模式。两种模式代表企业分别为阿里金融和京东金融。

拓展资料:

互联网金融行业面临大洗牌

在去杠杆的严监管的大背景下,近期信用风险事件频频爆发,根据网贷之家的数据显示,自6月以来,P2P行业新增问题平台133家,其中95家发布了相关逾期或停业兑付公告。

违约事件频发的主要原因1)随着市面上资金收紧,一些资质较差的企业出现债务违约,影响到相关P2P平台2)一些产品不合规、风控能力较差的平台,高返利的平台受到资金收紧的影响资金链断裂3)P2P平台频繁暴雷,引发投资者恐慌性挤兑,一些运营良好的P2P平台受到波及导致兑付困难。

短期来看行业集中暴雷会导致行业承压,另一方面随着不良企业出清,风控良好、经营合规的头部互金公司有望迎来快速发展,互联网金融企业能够服务一些传统金融机构难以触及的领域作为传统金融机构有效补充,随着百行征信建立,征信体系的逐渐完善,预计行业风控能力将显著提升,重点关注行业头部企业

④ 如何利用大数据做金融风控

互联网来金融(ITFIN)是指传源统金融机构与互联网企业利用互联网技术和信息通信技术实现资金融通、支付、投资和信息中介服务的新型金融业务模式。
大数据(big data),指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合。
任何投资都具备风险,不仅是在互联网的金融领域里存在。大数据的主要作用,是针对以往及现在的金融情况,进行数据分析,得出结果,预测未来金融方向的走向。
但是,金融除了受到经济发展的影响之外,也受到政治的影响。因此,只是靠大数据是无法对互联网金融进行控制,只能是最大化的规避风险,最小化的降低损失,获得高回报的收益。

⑤ 互联网金融时代已落幕

还没有,还有好长时间呢

⑥ 互联网金融大数据风控到底怎么玩

互联网金融是指以依托于支付、云计算、社交网络已及搜索引擎等互联网工具,实现资金融通、支付和信息中介等业务的一种新兴金融。做好互联网金融,要立足于三个基本点:平台、数据、金融。而在这其中,大数据,作为连接平台、用户、金融等方面的工具,有着举足轻重的意义。
由于互联网金融涉及广泛、囊括多个领域,各领域的风控策略也不尽相同,不能一概而论,下面就大数据风控在互联网金融领域的运用做一个大致的分类和解析。

首先,如何理解大数据风控
大数据风控的有效性除了强调数据的海量外,更重要的在于用于风控的数据的广度和深度。其中:
数据的广度:指用于风控的数据源多样化,任何互联网金融企业并不能指望依据单一的海量数据就解决风控问题,正如在传统金融风控中强调的“交叉验证”的原则一样,应当通过多样化的数据来交叉验证风险模型。互联网金融的风控策略也如此,可能对同一风险事件采用了多种策略。
数据的深度:指用于风控的数据应当基于某个垂直领域真实业务场景及过程完整记录,从而保证数据能够还原真实的业务过程逻辑。例如,很多第三方支付平台有丰富的真实交易记录,但由于大部分场景下无法获取交易商品的详细信息及用户身份,在用于风控时候价值大打折扣,因而数据的完整性和垂直深度很重要。

互联网金融产品如何利用大数据做风控,大致有以下一些分类和方向:
1、基于某类特定目标人群、特定行业、商圈等做风控。由于针对特定人员、行业、商圈等垂直目标做深耕,较为容易建对应的风险点及风控策略。
例如: 针对大学生的消费贷,主要针对大学生人群的特征
针对农业机具行业的融资担保。
针对批发市场商圈的信贷。

2、基于自有平台身份数据、历史交易数据、支付数据、信用数据、行为数据、黑名单/白名单等数据做风控。
>>>>身份数据:实名认证信息(姓名、身份证号、手机号、银行卡、单位、职位)、行业、家庭住址、单位地址、关系圈等等。
>>>>交易数据/支付数据:例如B2C/B2B/C2C电商平台的交易数据,P2P平台的借款、投资的交易数据等。
>>>>信用数据:例如P2P平台借款、还款等行为累积形成的信用数据,电商平台根据交易行为形成的信用数据及信用分(京东白条、支付宝花呗),SNS平台的信用数据。
>>>>行为数据:例如电商的购买行为、互动行为、实名认证行为(例如类似新浪微博单位认证及好友认证)、修改资料(例如修改家庭及单位住址,通过更换频率来确认职业稳定性)。
>>>>黑名单/白名单:信用卡黑名单、账户白名单等。

3、基于第三方平台服务及数据做风控 互联网征信平台(非人行征信)、行业联盟共享数据(例如小贷联盟、P2P联盟) FICO服务、Retail Decisions(ReD)、Maxmind服务。

>>>>IP地址库、代理服务器、盗卡/伪卡数据库、恶意网址库等;
>>>>舆情监控及趋势、口碑服务。诸如宏观政策、行业趋势及个体案例的分析等等

4、基于传统行业数据做风控 人行征信、工商、税务、房管、法院、公安、金融机构、车管所、电信、公共事业(水电煤)等传统行业数据。

5、线下实地尽职调查数据
包括自建风控团队做线下尽职调查模式以及与小贷公司、典当、第三方信用管理公司等传统线下企业合作做风控的模式。线下风控数据也是大数据风控的重要数据来源和手段。


希望能帮助到你,如想了解更多,可以关注微信号“大数据风控圈"哦~,很多互联网行业资讯分享。

⑦ 互联网金融模式的大数据金融

大数据金融是指依托于海量、非结构化的数据,通过互联网、云计算等信息化方式对其数据进行专业化的挖掘和分析,并与传统金融服务相结合,创新性开展相关资金融通工作的统称。大数据金融扩充了金融业的企业种类,不再是传统金融独大,并创新了金融产品和服务,扩大了客户范围,降低了企业成本。大数据金融按照平台运营模式,可分为平台金融和供应链金融两大模式。两种模式代表企业分别为阿里金融和京东金融。

⑧ 优秀的互联网金融公司,都是怎么玩大数据风控的

现在一提起互联网金融行业、Fintech领域,人工智能、大数据风控的热度就直线飙升。许多交易规模比较大的互联网金融公司都在努力发展大数据风控技术,以构建提供普惠金融服务的能力。
那么,这些优秀的互联网金融公司,都是怎么玩大数据风控的呢?
陆金所:KYC 2.0系统
精准判断投资者的风险承受能力
陆金所自成立起就引进国际领先的第四代风险管理系统,借鉴平安集团经验,形成了成熟的风险管理数据模型。其近日又推出了KYC 2.0系统,力求通过大数据技术、机器学习以及金融工程等方法,建立完整的互联网财富管理平台投资者适当性管理体系,在资金端对投资者进行“精准画像”,并提供智能推荐服务。
据了解,KYC2.0系统在原有的保守、稳健、平衡、成长、进取五大类型基础上对投资者风险承受力评估结果进行量化,每位用户都会获得专属的风险承受能力分值,又称“坚果财智分”,对投资者风险承受能力的判断更精准。
点评:量化数据信息,进行大数据建模。
风控最好的数据还是金融数据,例如年龄、收入、职业、学历、资产、负债等信用数据,这些数据同信用相关度高,可以反映用户的还款能力和还款意愿,这些数据因子在风控模型中必不可少,权重也很高,是风险评估最好的数据。
所以,陆金所以平安集团经验为基础运用到的大数据风控,使用的是围绕用户周围的信用数据,这些数据的特点是和用户的信用情况高度相关,可以作为一个重要因子进行录入,对其个人进行打分,再对其进行个体分析,最终得到一个综合评分,这就对用户进行了一个精准的风险承受能力评判。
民贷天下:拓宽数据维度
实现纯线上智能化服务
民贷天下基于稳健、安全、规范的风控理念,其风控部门确定了“风控从严”原则,设定了借款审查、贷中管理、贷后跟踪等风控流程。目前,民贷天下正全力推进全智能化建设,构造一个完整的、从资产端到平台端的全链路大数据风控系统,通过对人工智能、大数据分析、知识图谱、区块链等技术的运用,为平台运营及业务发展提供强大动力。
在传统数据之外,民贷天下还不断拓展数据维度,如在用户授权下,对用户社交数据、访问时间、相关认证、通讯记录等数据整合分析,并且与蚂蚁金服、芝麻信用、前海征信、同盾等第三方机构紧密合作,进一步丰富对用户的数据画像,使民贷天下的大数据风控系统更加精准,从而实现从客户申请、受理、审核、授信、放款到贷中贷后管理等纯线上智能化服务。
点评:拓宽数据维度,是对传统风控的补充。
传统风控模型已经不能适应复杂的现代风险管理环境,特别在数据信息录入维度上,影响用户信用评分的信息较多,很多都没有引入到风险评估流程。而大数据风控可以提供全面的数据(数据的广度),强相关数据(数据的深度),实效性数据(数据的鲜活度)。
民贷天下利用这样的大数据风控,通过与第三方合作等方式,将内部数据以及原有数据打通和整合之后,就会影响风险评估结果,提升信用风险管理水平,客观地反映用户风险水平。这些多维度、全面的信息正是大数据风控的优势所在,同时也是对传统风控一个很好的补充,进一步实现智能化服务。
真融宝:以数据介质为主
构建数据和模型算法的核心技术
真融宝以数据介质为主,利用分布式计算处理数据,以公众互联网的全网为平台,以全网收集的数据来补充内部网集成的数据。并且在用户数据方面,对每个新进用户建立一份电子档案,对每名用户投资需求进行了解登记,并对每一笔资金进行多重备份,形成动态的用户资金数据。
除此之外,真融宝还利用大数据进行决策,将金融活动转化为智能数据处理活动,降低人为因素的干扰,提高风险评估、分析和预警能力,大数据提供的信息使得真融宝的决策更加科学智能化,对于风控的精准度控制起到非常大的帮助作用。
点评:数据和模型算法,可建立实时风险管理视图。
大数据的数据采集和计算能力,可以帮助企业建立实时的风险管理视图。借助于全面多纬度的数据、自我学习能力的风控模型、实时计算结果、坏种子数据,真融宝可以通过大量的数据累积,能够产生出非常有效的识别客户的能力,提升量化风险评估能力。
数据、技术、模型、分析将成为信用风险评估的四个关键元素,其背后的力量就是大数据的技术和分析能力。真融宝利用大数据的风控能力,实时输出风险因子信息,提高了风险管理的及时性。
一直以来,风控都是金融机构的生命线。从陆金所、民贷天下、真融宝这三家互联网金融公司为例,预计在未来,可能每家做借贷类的互联网金融公司都会发展出属于自己的一套大数据风控体系,并且随着互联创业公司的业务数据越来越大,数据基础会逐渐扎实。

⑨ 如何在大数据时代让风控形成闭环

内部风控主要是防范一些操作上的风险,尽量的将主观人为的操作系统化,这就要求网贷平专台加大技术开发属的投入,对后台系统功能不断完善以及操作员与管理员的权限尽可能细化。
外部风控主要体现在项目端上,就是要抓住借款人的信用情况、借款资金流向等因素。

⑩ 1、什么是互联网金融支付什么是第三方 支付举例说明。 2、大数据金融的特征有哪些

互联网金融是传统金融行业与互联网精神相结合的新兴领域。理论上任何涉及到了广义金融的互联网应用,都应该是互联网金融,包括但是不限于为第三方支付、在线理财产品的销售、信用评价审核、金融中介、金融互联网金融的发展已经历了网上银行、第三方支付、个人贷款、企业融资等多阶段,并且越来越在融通资金、资金供需双方的匹配等方面深入传统金融业务的核心。互联网金融的特征是:通过互联网、移动互联网等工具,使得传统金融业务具备透明度更强、参与度更高、协作性更好、中间成本更低、操作上更便捷等一系列特征。”爱定投“在这方面做的很不错。

阅读全文

与互联网金融资金闭环大数据相关的资料

热点内容
中天高科国际贸易 浏览:896
都匀经济开发区2018 浏览:391
辉县农村信用社招聘 浏览:187
鹤壁市灵山文化产业园 浏览:753
国际金融和国际金融研究 浏览:91
乌鲁木齐有农村信用社 浏览:897
重庆农村商业银行ipo保荐机构 浏览:628
昆明市十一五中药材种植产业发展规划 浏览:748
博瑞盛和苑经济适用房 浏览:708
即墨箱包贸易公司 浏览:720
江苏市人均gdp排名2015 浏览:279
市场用经济学一览 浏览:826
中山2017年第一季度gdp 浏览:59
中国金融证券有限公司怎么样 浏览:814
国内金融机构的现状 浏览:255
西方经济学自考论述题 浏览:772
汽车行业产业链发展史 浏览:488
创新文化产业发展理念 浏览:822
国际贸易开题报告英文参考文献 浏览:757
如何理解管理经济学 浏览:22