导航:首页 > 国际贸易 > 国际贸易矩阵

国际贸易矩阵

发布时间:2020-11-25 03:33:15

① 以下内容属于我国国际贸易会计的特点

我国国际贸易会计的特点:
一是高资产负债率,因为外贸行业处于行业生命周期的成版熟阶权段、波士顿矩阵的金牛行业、五力模型中的竞争激烈的行业,决定了该行业内的企业应充分运用负债杠杆来提高竞争能力。
二是低销售毛利率,根据上述的分析,由于外贸行业的激烈竞争,所以大部分外贸企业的毛利率相当低,有的仅有2%左右甚至更低。
三是高资产周转率。
一方面外贸行业属于贸易服务行业,流转量比生产型企业要大一些,另一方面高周转率也是外贸企业的低毛利率造成的,如果没有高周转率来补偿低毛利经的话,那外贸企业就无法在行业取得平均资本回报率,也无法在行业内生存。根据杜邦财务分析公式:净资产收益率=销售利润率×总资产周转率×权益乘数,其中销售利润率主要取决于销售毛利率,低销售毛利率将导致低销售利润率,在权益乘数不变的情况下,那么要有更高的总资产周转率来支撑净资产收益率,否则该行业的资本将不断地撤离。

② 做外贸进出口怎样开发客户,外贸进出口如何开发新客户

机和法结合,即工具和方法。为了达到快速的目的,新人童鞋需要梳理开发客回户的有效工具、途径和方法。这答可以请教外贸老鸟、度娘、公司老板等。选择适合自己的一种或多种,能力高的多管齐下,广撒网普中粮,总有逮到大鱼的机会。
有经验外贸员都知道开发客户的八大方法,这里可自行去搜索了解。要想快速,舍不得孩子套不着狼,我推荐的是,利用大数据工具。
现在大数据时代,外贸发展也比较成熟,除了B2B网站,还有一些专为外贸人设计的外贸客户开发软件,费用低,功能强大,缺点就是得自己寻找,客户精准度不高,可以自己考虑斟酌下是不是要使用。

③ 复旦大学经济学院国际贸易专业研究生入学考试英语一和数学三各指哪些内容

是这样的:

2009年数学三考试大纲 数 学 三
考试科目 微积分56%、线性代数22%、概率论与数理统计22%
与08年大纲比较------ 深蓝部分为去掉部分 大红部分为修改部分

微 积 分
一、函数、极限、连续
考试内容
函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、隐函数、反函数、分段函数和隐函数基本初等函数的性质及图形初等函数函数关系的建立
数列极限与函数极限的定义及其性质 函数的左极限和右极限无穷小和无穷大的概念及关系 无穷小的性质及无穷小的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:
,
函数连续的概念 函数间断点的类型 初等函数的连续性闭区间上连续函数的性质
考试要求
1.理解函数的概念,掌握函数的表示法,会建立简单应用问题的函数关系.
2.了解函数的有界性、单调性、周期性和奇偶性.
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.
4.掌握基本初等函数的性质及其图形,理解初等函数的概念.
5.了解数列极限和函数极限(包括左、右极限)的概念.
6.理解无穷小的概念和基本性质,掌握无穷小的比较方法.了解无穷大的概念及其与无穷小的关系.
7.了解极限的性质与极限存在的两个准则,掌握极限四则运[wiki]算法[/wiki]则,会应用两个重要极限.
8.理解函数连续性的概念(含左连续与右连续), 会判别函数间断点的类型.
9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值与最小值定理、介值定理),并会应用这些性质.

二、一元函数微分学
考试内容
导数和微分的概念 导数的几何意义和经济意义函数的可导性与连续性之间的关系 平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数、反函数和隐函数的微分法 高阶导数 一阶微分形式不变性微分中值定理 洛必达(L’Hospital)法则函数单调性的判别 函数的极值函数图形的凹凸性、拐点及渐近线 函数图形的描绘函数的最大值与最小值
考试要求
1. 理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线[wiki]方程[/wiki]和法线方程.
2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,会求分段函数的导数会求反函数与隐函数的导法.
3.了解高阶导数的概念,会求简单函数的高阶导数.
4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.
5.理解罗尔(Rol1e)定理、拉格朗日(Lagrange)中值定理、了解泰勒(Taylor)定理、了解柯西(Cauchy)中值定理,掌握这四个定理的简单应用.
6.会用洛必达法则求极限.
7.掌握函数单调性的判别方法,了解函数极值的概念掌握函数极值、最大值和最小值的求法及其应用.
8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数具有二阶导数,当 时, 的图形是凹的;当时,的图形是凸的),会求函数图形的拐点和渐近线.
9.会描绘简单函数的图形.

三、一元函数积分学
考试内容
原函数和不定积分的概念 不定积分的基本性质基本积分公式 定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿一莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法和分部积分法 反常(广义)积分积分的应用
考试要求
1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式;掌握不定积分的换元积分法与分部积分法.
2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.
3.会利用定积分计算平面图形的面积、旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用题.
4.了解反常积分的概念,会计算反常积分.

四、多元函数微积分学
考试内容
多元函数的概念 二元函数的几何意义 二元函数的极限与连续性的概念有界闭区域上二元连续函数的性质多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法 二阶偏导数 全微分多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算无界区域上简单的广义二重积分
考试要求
1.了解多元函数的概念,了解二元函数的几何意义.
2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.
3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会用多元隐函数的偏导数.
4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决某些简单的应用问题.
5.了解二重积分的概念与基本性质,掌握二重积分的计算方法([wiki]直角[/wiki]坐标、极坐标),了解无界区域上较简单的广义二重积分并会计算.

五、无穷级数
考试内容
常数项级数收敛与发散的概念收敛级数的和的概念 级数的基本性质与收敛的必要条件几何级数与p级数及其收敛性正项级数收敛性的判别任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理 幂级数及其收敛半径、收敛区问(指开区间)和收敛域幂级数的和函数 幂级数在收敛区间内的基本性质 简单幂级数的和函数的求法
初等函数的幂级数展开式
考试要求
1.了解级数的收敛与发散、收敛级数的和的概念.
2.了解(原为“掌握”)级数的基本性质及级数收敛的必要条件,掌握几何级数及p 级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法(去掉)
3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解(原为“掌握”)交错级数的莱布尼茨判别法.
4.会求幂级数的收敛半径、收敛区间及收敛域.
5.了解幂级数在收敛区间内的基本性质(和函数的连续性、逐项微分和逐项积分),会求简单幂级数在其收敛区间内的和函数,并会由此求出某些数项级数的和.
6。了解(原为“掌握”)ex,sinx,cosx,ln(1+x),(1+x)a麦克劳林展开式,会用它们将简单函数间接展开成幂级数(去掉).

六、常微分方程与差分方程
考试内容
微分方程的概念变量可分离的微分方程 齐次微分方程 一阶线性微分方程 线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念差分方程的通解与特解一阶常系数线性差分方程微分方程与差分方程(去掉)的简单应用

考试要求
1.了解微分方程及其阶、解、通解、初始条件和特解等概念.
2.掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法.
3.会解二阶常系数齐次线性微分方程.
4. 了解线性微分方程解的性质及解的结构定理,会解自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与乘积(去掉)的二阶常系数非齐次线性微分方程.
5.了解差分与差分方程及其通解与特解等概念.
6.了解(原为“掌握”)一阶常系数线性差分方程的求解方法.
7.会用微分方程和差分方程(去掉)求解简单的经济应用问题.
Back

线 性 代 数
一、行列式
考试内容
行列式的概念和基本性质 行列式按行(列)展开定理
考试要求
1.理解行列式的概念,掌握行列式的性质.
2. 会应用行列式的性质和行列式按行(列)展开定理计算行列式.

二、矩阵
考试内容
矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂方阵乘积的行列式
矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵矩阵的初等变换 初等矩阵 矩阵的秩矩阵的等价分块矩阵及其运算
考试要求
1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义和性质,理解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.
2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵的乘积的行列式的性质.
3.理解逆矩阵的概念、掌握逆矩阵的性以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.
4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.
5.了解分块矩阵的概念,掌握分块矩阵的运算法则.

三、向量
考试内容
向量的概念 向量的线性组合与线性表示 向量组线性相关与线性元关 向量组的极大线性元关组 等价向量组 向量组的秩向量组的秩与矩阵的秩之间的关系
向量的内积 线性无关向量组的正交规范化方法
考试要求
1.了解向量的概念,掌握向量的加法和数乘运算法则.
2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.
3.理解向量组的极大无关组的概念,会求向量组的极大无关组及秩.
4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.
5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法

四、线性方程组
考试内容
线性方程组的克莱姆(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线性方程组(导出组)的解之间的关系非齐次线性方程组的通解
考试要求
1.会用克莱姆法则解线性方程组.
2. 掌握非齐次线性方程组有解和无解的判定方法.
3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.
4.理解非齐次线性方程组的结构及通解的概念.
5. 掌握用初等行变换求解线性方程组的方法.

五、矩阵的特征值和特征向量
考试内容
矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵
考试要求
1.理解矩阵的特征值、特征向量等概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.
2.理解矩阵相似的概念、掌握相似矩阵的性质,了解矩阵可对角化的充分条件和必要条件,掌握将矩阵化为相似对角矩阵的方法.
3.掌握实对称矩阵的特征值和特征向量的性质.

六、二次型
考试内容
二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩惯性定理 二次型的标准形和规范形正交变换和配方法化二次型为标准形二次型及其矩阵的正定性
考试要求
1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换和合同矩阵的概念.
2.理解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会甩正交变换和配方法化二次型为标准形.
3.理解正定二次型、正定矩阵的概念,并掌握其判别法.

Back

概 率 论 与 数 理 统 计
一、随机事件和概率
考试内容
随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式事件的独立性
独立重复事件
考试要求
1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件间的关系及运算.
2. 理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法、乘法公式、全概率公式及贝叶斯(Bayes)公式等.
3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.

二、随机变量及其分布
考试内容
随机变量 随机变量的分布函数及其性质 离散型随机变量的概率分布连续型随机变量的概率密度 常见随机变量的分布随机变量函数的分布
考试要求
1.理解随机变量的概念;理解分布函数

的概念及性质;会计算与随机变量有关的事件的概率.
2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用.
3. 理解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.
4.理解连续型随机变量及其概率密度的概念,掌握均匀分布 、正态分布、指数分布及其应用,其中参数为 的指数分布 的密度函数为

5.会求随机变量函数的分布.

三、多维随机变量的分布
考试内容
多维随机变量及其分布函数 二维离散型随机变量概率分布、边缘分布和条件分布、二维连续型随机变量的概率密度 边缘概率密度和条件密度随机变量的独立性和不相关性 常见二维随机变量的分布 两个及两个以上随机变量的函数的分布
考试要求
1.理解多维随机变量的分布的概念和基本性质.
2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度.掌握二维随机变量的边缘概率分布和条件分布.
3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件;理解随机变量的不相关性与独立性的关系.
4.掌握二维均匀分布和二维正态分布 ,理解其中参数的概率意义.
5.会根据两个随机变量的联合分布求其函数的分布;会根据多个相互独立随机变量的联合分布求其函数的分布.

四、随机变量的数字特征
考试内容
随机变量的[wiki]数学[/wiki]期望(均值)、方差、标准差及其性质随机变量函数的数学期望切比雪夫(Chebyshev)不等式矩、协方差、相关系数及其性质
考试要求
1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.
2.会随机变量函数的数学期望.
3.了解(原为“掌握”)切比雪夫不等式.

五、大数定律和中心极限定理
考试内容
切比雪夫(Chebyhev)大数定律 伯努利(Bernoulli)大数定律 辛钦(Khinchine)大数定律 棣莫弗-拉普拉斯(De Moivre-Laplace)定理 列维-林德伯格(Levy-Lindberg)定理
考试要求
1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).
2.了解棣莫弗-拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维-林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.

3、4两条中的内容全部去掉了。
二、概率论与数理统计部分

六、数理统计的基本概念
考试内容
总体 个体 简单随机样本 统计量 经验分布函数 样本均值样本方方差和样本矩 分布 分布 分布 分位数 正态总体的常用抽样分布
考试要求
1.了解(原为“理解”)总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为:
.
2.了解(原为“理解”)产生 变量、 变量和变量的典型模型;理解标准正态分布、 分布、分布和 分布的分位数,会查相应的数值表.
3.掌握正态总体的抽样分布:(去掉)样本均值、样本方差、样本矩、样本均值差、样本方差比(去掉)的抽样分布.
4.了解(原为“理解”)经验分布函数的概念和性质,会根据样本值求经验分布函数(去掉).

七、参数估计
考试内容
点估计的概念 估计量与估计值 矩估计法 最大似然估计法 估计量的评选标准区间估计的概念,单个正态总体均值的区间估计,单个正态总体方差和标准差的区间估计,两个正态总体的均值差和方差比的区间估计(去掉)
考试要求
1.了解(原为“理解”)参数的点估计、估计量与估计值的概念;了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验正估计量的无偏性(去掉).
2.掌握矩估计法(一阶、二阶矩)和最大似然估计法
3.掌握建立未知参数的(双侧和单侧)置信区间的一般方法;掌握正态总体均值、方差、标准差、矩以及与其相联系的数值特征的置信区间的求法.
4.掌握两个正态总体的均值差和方差比及相关数字特征的置信区间的求法.

八、假设检验(去掉)
考试内容
显著性检验 假设检验的两类错误 单个及两个正态总体的均值和方差的假设检验
考试要求
1.理解“假设”的概念和基本类型;理解显著性检验的基本思想,掌握假设检验的基本步骤;会构造简单假设的显著性检验.
2.理解假设检验可能产生的两类错误,对于较简单的情形,会计算两类错误的概率.
3.掌握单个及两个正态总体的均值和方差的假设检验.

试 卷 结 构

(-)总分 试卷满分为150分
(二)内容比例 微积分约56% 线性代数约22% 概率论与数理统计约22%
(三)题型比例 填空题与选择题约37% 解答题(包括证明题)约63%
注:考试时间为 180分钟

希望对你有所帮助! 祝你成功!

④ 做国际贸易要具备什么条件

外贸怎么做?这个话题我看非常多的人在问,那么今天我就抽时间和大家一起聊聊。比较系统的,专业的层面来说,你需要有以下的做法:
针对以上你的问题,需要从多个方面招手, 如下紧做参考:
1.有专业的外贸人员,也就是外销员, 如果没有的,话可以招聘有经验的外贸人员,做过5年或者以上的算作是有经验的,前提是在通一个行业的。 如果一个外贸员今年做五金 ,明年做玩具,后年做服装,再后年做电器,再做食品, 那这样的外贸人员不能算作有经验的。 招聘来的人重点要评估他的外贸专业能力和业务技能。如果你实在找不到这样的人才,就是是花钱也找不到,或者你也不愿意花很多钱招一个有经验的,那你的外贸基本做不起来的,除非你找专业的外贸培训机构进行学习。这是最后一条路。
2.你需要有以点英语基础,最起码日常的用于你得会说会写会认,英语3级的水平吧。
3.你得对产品非常熟悉,外贸销售不是以价格为导向,以客户的需求,以市场和产品为导向。很多经验不足的外贸业务人员天天会围绕价格和客户谈, 结果都把客户谈跑了,结果就是怎么做也没有订单。说明他们考虑问题的思维出了问题,拿就是不能以价格为主导,要以产品和市场,以客户为中心来谈外贸生意。所以啊你的对产品的材料,成本构成,生产工艺, 功能,使用, 运用范围,寿命,市场前景,行业状况,竞争对手, 行业的客户名字,类型,交货期,特征,卖点, 参数,结构,软件,硬件,流程,生产设备,生产过程,包装,保修,质保等各个方面要非常熟悉,否则,你就不是一个很懂产品的外贸人员。
4.你得懂得专业的外贸技能。比如专业的外贸流程,如何引导客户,外贸专业的单证,合同,什么是shipping advice, 什么是agreement, 什么是Ocean B/L, 什么是 House B/L, 什么是 Master B/L, 什么是Air way B/L , 什么是 FTA, 什么是 bill of exchange等等。你得知道国际贸易术语, 什么是incoterms。 你得知道国际支付方式,什么是信用证, 什么是WU, 什么是DP, DA, OA, 如何使用。 什么保理等。 不知道怎么办呢? 这是非常专业的能力范畴。你查不到,问不到, 即时查到也是模棱两可的。不系统的,所以只有一条路, 你还是得学。 你现在这里找不到100%的答案,或者是你看到答案之后想着就能做,这也是没有办法的。因为外贸太专业了。
5.你必须懂得外贸市场,不同的市场需要不同的产品,不同的要求, 不同的认证,不同的价格,不同的档次,不同的电压,不同的电器参数,不同的风格。不同的喜好,不同的环境。归根到底是不同的国家经济不一样,人不一样,所以需求不一样。
6.你必须懂得外贸的营销途径,比如采用B2B, 或者是B2C, 或者是搜索引擎,或者是SEM, SEO, BIG DATA, 还是EXPO, 还是其它的途径,不过一定要根据自己的产品来,不同的产品,营销的途径不一样的, 否则你就是南辕北辙了。否则你就做不好外贸。
7.懂的外贸公司的整体运作。如何外贸公司的开办,进出口权办理, 收款账户,结汇,退税。如何采用小资金拉动大的客户。供应链开发以及控制,产品规划, 以及市场规划,用人,薪酬制度,激励措施,团队建设等等。
8.你必须懂得掌控国际贸易风险,别做了一个订单,亏的比赚的多。
总之,国际贸易是非常专业的一个综合性系统性很强的外贸生意。胆大也要细心,专心也要专业,更需要努力学习比如可以找环球外贸培训机构学习专业的国际贸易,积累,多问。祝您生意兴隆。 希望你从我的文章中学到了一些东西。也可以私信我哦。我是一个乐于帮助别人的人。

⑤ 供给我各种缩写单词.如WTO(世界贸易组织)

OTC 人才
UFO 不明飞行物

⑥ 为什么大学要学线性代数,有什么用我是国贸专业的

我本科是学数学专业的,有个国贸的小师妹。看了下她的国贸书。

经济学往高了做都是数学模型,所以要坚信只有数学基础好的才能去做金融。你学国贸肯定学了凯恩斯的各种模型,也学了管理经济学或是计量经济学中的规模效益递减原理等。这些原理都是通过数学的微积分原理得到的,你们学习的叫高等数学。以此为基础,国贸的李嘉图模型等等也都是建立在数学工具的基础上的,我现在看李嘉图模型就完全能够推导出来。

再说线性代数,你以后读研或者发论文做研究,对高深的经济学理论学习或者对数据进行整理分析,常常会用到回归分析等线性方法(例如DEA方法,线性回归分析),如果你不懂线性代数,怎么能够看得懂经济学结论背后的深刻含义呢?大体就像小商小贩的首先要认识钱是什么会算加减法吧。。
如果你只认为国贸理论的学习一点用都没有。到时候背背书考个报关员,混一个国贸企业的经理什么的那就另当别论了。

⑦ 大学运动会关于国贸专业的方阵入场词,以及关于该方阵的表演解说词,其表演内容为,几个国家的国旗展示,

你看看可以仿照一下不

阅读全文

与国际贸易矩阵相关的资料

热点内容
中天高科国际贸易 浏览:896
都匀经济开发区2018 浏览:391
辉县农村信用社招聘 浏览:187
鹤壁市灵山文化产业园 浏览:753
国际金融和国际金融研究 浏览:91
乌鲁木齐有农村信用社 浏览:897
重庆农村商业银行ipo保荐机构 浏览:628
昆明市十一五中药材种植产业发展规划 浏览:748
博瑞盛和苑经济适用房 浏览:708
即墨箱包贸易公司 浏览:720
江苏市人均gdp排名2015 浏览:279
市场用经济学一览 浏览:826
中山2017年第一季度gdp 浏览:59
中国金融证券有限公司怎么样 浏览:814
国内金融机构的现状 浏览:255
西方经济学自考论述题 浏览:772
汽车行业产业链发展史 浏览:488
创新文化产业发展理念 浏览:822
国际贸易开题报告英文参考文献 浏览:757
如何理解管理经济学 浏览:22